
Jericho Comms™

Version 1.5.3

23 April 2017

Joshua M. David

joshua.m.david [at] tutanota.de

1 Abstract

This document describes the design of an end-to-end encrypted, group text

communications program which provides information-theoretic security [25] for all

messages that are sent and received. The goal is to deliver a high assurance, encrypted

communications program with plausible deniability [34] for activists, human rights lawyers,

journalists, whistleblowers and citizens of the world that need high assurances that their

communications are free of censorship, control and eavesdropping from the world's

governments and intelligence agencies. To defeat the world's top intelligence agencies,

citizens of every country need to raise their communications security to a level where

no-one can ever hope to break the encryption, regardless of advances in computing power,

cryptanalysis, mathematics or quantum physics.

To accomplish the program's design goals, the software uses a True Random Number

Generator [22] (TRNG), the One-Time Pad [23] (OTP) cipher for message encryption and a

one-time Message Authentication Code [24] (MAC) for message authenticity. To provide

additional protection of the one-time pad database during the initial key exchange [26]

between users, a strong passphrase [27] and keyfile [66] can be used. The program will then

use a cascade of Password Based Key Derivation Functions [28] (PBKDFs), stream

ciphers [29] and MACs to encrypt and authenticate the database. Other features of the

program include a strong MAC for authentication between the clients and the server, a

decoy messaging system to frustrate traffic analysis [65] and a self destruct mechanism

which can wipe all the client databases in case of an emergency.

One-time pads are not frequently used outside of government and military networks

because they are somewhat inconvenient to use. This means they have generally only been

reserved for truly important communications such as the highest-level Allied

communications in World War II [64] or the Washington-Moscow hotline [30]. They are still

used by the US government where heavily armoured trucks transport random numbers to

the Pentagon [218]. The main problems are that the user needs to collect a lot of truly

random data and the one-time pads must be exchanged through a secure channel, e.g.

delivered in person, before communication can take place. These are not insurmountable

problems and the design of this software solves the main issues which make using one-time

pads too impractical. The whole system is very simple to set up and use, including

generating truly random key material, exchanging the one-time pads securely, key

management and communicating securely. The program itself can be downloaded from the

project's website [31] and the full source code, which is available on GitHub [32], is released

under the General Public License, Version 3.0 [33].

Contents

1 Abstract

2 Introduction

3 Advantages

4 Formulas and notation

5 Overall network architecture

6 How it works

7 Server configuration

8 Server authentication protocol

8.1 Design goals

8.2 Limitations

8.3 Initial setup

8.4 Client API request

8.5 Server API response

9 Preventing information leakage and traffic analysis

10 Using TLS/HTTPS

11 User Chosen TRNG

12 Included TRNG

12.1 Selecting quality photographs

12.2 TRNG design

12.3 TRNG testing tools

12.4 TRNG analysis and test results

13 Pad storage and exporting data

14 One-time pad database encryption and authentication

14.1 Cascade database encryption

14.2 Cascade database authentication

14.3 Database index authentication

15 Protection of database encryption and authentication keys

15.1 Database master key derivation

15.2 Sub key derivation

15.3 Encryption and authentication of database keys

16 Using HTML5

17 REST API using JSON

17.1 Send message

17.2 Send message server response

17.3 Receive messages request

17.4 Receive messages response

17.5 Initiate self destruct request

17.6 Self destruct initiated response

18 Message encoding

19 Message encryption process

20 Message decryption process

21 Message authentication code (MAC)

22 Failsafe CSPRNG

23 Self destruct process

24 Extra security considerations

25 References

2 Introduction

In the wake of the global surveillance disclosures [1] (Snowden revelations) it has become

apparent that the majority of our computer systems and communications are no longer

secure. The NSA [2] and its spy agency partners are actively collecting [3] and storing [4] the

whole world's communications as it transits their networks. Any data passing through the

Five Eyes [5] and partner countries (Australia, Belgium, Canada, Denmark, France,

Germany, Italy, Japan, the Netherlands, New Zealand, Norway, Singapore, Spain, South

Korea, Sweden, United Kingdom and United States) is intercepted, collected, decrypted

and stored indefinitely. Internet traffic, phone calls, email, chat messages and everything

else are vulnerable to this international surveillance network. Edward Snowden

describes [6] this network:

"The Five Eyes alliance is sort of an artifact of the post World War II era where the

Anglophone countries are the major powers banded together to sort of co-operate and

share the costs of intelligence gathering infrastructure... The result of this was over

decades and decades some sort of a supra-national intelligence organisation that

doesn't answer to the laws of its own countries."

This spy network is a massive breach of international human rights and it is an attack on

the liberty, freedom and privacy of every person on the planet. It has huge implications for

democracy, freedom of the press, attorney-client privilege and freedom of speech. The

Universal Declaration of Human Rights [7] states clearly:

Article 3: Everyone has the right to life, liberty and security of person.

Article 12: No one shall be subjected to arbitrary interference with his privacy, family,

home or correspondence, nor to attacks upon his honour and reputation. Everyone has

the right to the protection of the law against such interference or attacks.

From the NSA leaks we know some of the NSA's capabilities for interception, collection,

malware, hacking [8] and interdiction [9]. However we know very little about the NSA's full

cryptanalytic capability from the NSA leaks. It is classed as Exceptionally Compartmented

Information (ECI) [10], which very few people have access to within the NSA. In other

words, the information is available only on a need to know basis. We can assume this is

likely only their top cryptanalysts and agency directors. This is similar to how the Enigma

cipher was broken but the knowledge of this was known only to a few and kept secret for

decades afterwards [11]. Unfortunately Snowden did not have access to all their

cryptanalytic capabilities so we do not know what the NSA's true code breaking abilities are

and which ciphers they can break. Edward Snowden once stated [12]:

"Encryption works. Properly implemented strong crypto systems are one of the few

things that you can rely on."

However no-one can actually qualify that statement to say which encryption is actually

strong and which is not. Snowden never had access to the highly sensitive,

compartmentalised cryptanalysis information at the NSA in the first place. We are also

unsure about which standards that the NSA have compromised or weakened. We know that

the Dual EC DRBG standard [13] and the NIST curves [14] appear very suspect. However

through their control and manipulation of the NIST [15] and IETF [16] standards it is entirely

possible that most public domain cryptography has been subtly influenced, weakened or

corrupted to some degree. To be protected from the NSA, it makes sense to take a

conservative approach and trust no single algorithm on its own. This means at a minimum

using cascading ciphers and algorithms [17] to hedge against the NSA exploiting flaws in the

algorithms that only they know about [18]. In addition to this it is important to use

algorithms and best-practice knowledge from independent, reputable cryptographers and

security experts with no affiliation to the US government. It is even better if these

cryptographers are vocal with their criticisms about surveillance and government

overreach such as Daniel J. Bernstein [19] or Bruce Schneier [20] so people can be assured

they are not likely to intentionally backdoor their algorithms.

The main problem with public key cryptosystems currently in common use is that they are

particularly vulnerable to quantum computers [35]. We know that the NSA are close to

building one [36]. They will not make a public announcement when they do get one and they

may get one well before they become publicly available, especially with their large budget of

one billion USD per annum for cryptanalysis and exploitation services [37]. An

announcement from the NSA [38] in September 2015 has recommended a plan to transition

to quantum resistant algorithms in the very near future. Some argue that this is a hint that

they consider RSA or Elliptic Curve cryptography will be no longer safe to use [39] [40] in the

very near future. Even with quantum safe public key algorithms there is no general

consensus about which algorithms are actually secure against quantum computers or what

key sizes will be sufficient. A lot more public cryptanalysis and research in the area of post

quantum cryptography really needs to be done before this becomes a viable option. A 2008

paper [21] proposed a large key size of 7,667,855 bits for a hypothetical 256 bit security level

when using the McEliece cryptosystem [41]. Comparing that security level to the design of

this program and given an equal 7,667,855 bits of truly random data, this program would

split the data into separate one-time pads of 1536 bits each, achieving perfect secrecy for

4992 chat messages at 115 bytes of plaintext per message. This is essentially a years worth

of communication with another person but the user gets proven information-theoretic

security instead of an unproven scheme.

Another problem with public key cryptography is that to do it securely, users need to meet

and verify public key fingerprints in person. Verifying by voice over the phone was once

recommended, but new research has shown [42] that given a few audio samples of

someone's voice, an attacker can use software that automates speech synthesis to create a

close duplicate of an individual's voice. The technology can then transform the attacker's

voice to say any message in the voice of the victim. With the NSA in a privileged position on

the Internet backbone, they could replace any public key fetched over the Internet with one

of their choosing using QUANTUMINSERT [43]. For example, if a source calls a journalist to

confirm the fingerprint of the public key they downloaded, the NSA can use voice synthesis

to confirm the fingerprint of the NSA's public key instead. With the source now encrypting

to the NSA's public key, this would allow the NSA to transparently perform a Man in the

Middle attack [44] (MITM) on future communications between the source and the

journalist.

Other methods of public key verification simply offload the trust responsibility to some

other mechanism, for example Certificate Authorities which have a multitude of

problems [45] [46] [47] and are not considered secure against nation state adversaries. If users

need to meet physically to manually compare fingerprints to achieve reasonable security,

then it is no less difficult to exchange a small memory card full of one-time pads instead

which would allow communication for years into the future with perfect secrecy. With

one-time pads, there is no fear, uncertainty or doubt about which algorithms are safe,

which key sizes are sufficient and which algorithms are truly safe from quantum

computers. Users can focus on operational security which is something they can

realistically control, rather than relying on unproven cryptographic algorithms and hoping

that they are sufficiently secure against an adversary such as the NSA.

With a focus on ease of use, understanding, configuring and using this program is much

easier for the average user than complicated systems like GnuPG [245]. The only minor

inconvenience is the key exchange before use. Everything else which is complicated can be

simplified and mostly automated using well written software and a well designed user

interface.

3 Advantages

Since the Snowden revelations starting in June 2013, there have been a number of secure

messaging solutions released. This software was one of the earliest counter-offensives to

these revelations with a fully functional prototype release in August 2013. This software has

a number of strong advantages compared to other secure messaging solutions whose

designers have not accounted for or understood the entire breadth and depth of the

revelations. Most of them aim for mass market, average grade security and do not

adequately protect their users against the full capabilities of the NSA [2], GCHQ [220] and

TAO [221].

The advantages of this software are:

Fully open source – anyone can freely contribute, distribute, download, modify and

use the software.

Simple to understand and use – anyone can use including journalists and novice

computer users.

Runs on fully open source environments – no need to trust a closed source

operating system.

End-to-end encrypted – no service provider in the middle with ability to read user

messages.

Forward secrecy – compromise of a message or key does not compromise past or

future messages.

Plausible deniability – users under duress can provide a key that decrypts to a

plausible message.

Secure against quantum computers – secure against future advances in physics

and computing.

Information-theoretically secure – messages remain secure even against

unlimited computing power.

Automated decoy messages – hides the real number of messages being sent across

the network.

Limited network metadata – hinders traffic fingerprinting, analysis and automated

remote exploits.

Not wholly reliant on NIST – standards are combined with algorithms from trusted

cryptographers.

Full design whitepaper – design is verifiable and auditable for cryptographers and

security researchers.

Critical code is unit tested – strong confidence that the cryptography and software

works correctly.

Code is well written and commented – easily verifiable for security researchers

and other developers.

Code is written to secure coding guidelines – coded defensively with knowledge

of common pitfalls.

Code is written in memory safe languages – limited attack surface for buffer

overflows and exploits.

Code is developed on an air-gapped system – prevents subtle infiltration of the

code repository.

Code and releases are signed with GnuPG – users can trust in the code's

authenticity and integrity.

Signing key fingerprint published on a blockchain – solid verification of the

author's true public key.

Signed warrant canary with every release – alerts users if the author is under

duress or court order.

Not developed in the United States – author cannot be threatened with National

Security Letters.

Not government or defense agency funded – author has no questionable

affiliations or loyalties.

Simple user guide and installation instructions – prevents user error and

misconfiguration issues.

4 Formulas and notation

The notation used in this document will use only limited mathematical and cryptographic

formulas and will tend towards explaining the design in plain English rather than

mathematical formulas so that the content is more accessible and understandable by a

wider audience.

⊕ Bitwise Exclusive OR [48] (XOR) operator. E.g.
0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0

+ Regular addition. E.g.
2 + 2 = 4.

⊗ Regular multiplication. E.g.
5 ⊗ 5 = 25.

% The modulo [58] operation (mod). E.g.
5 % 2 = 1
9 % 3 = 0.

|| String concatenation [108]. Inputs will be in the same type and format
before being concatenated together. E.g.
72fa270d || 9148a82c = 72fa270d9148a82c

← The variable assignment [107] statement. E.g.
c ← a + b

=== The strict equality [111] operator. E.g.
if ($var === 37)
{
 return true;
}

5 Overall network architecture

The following will outline the entire design of the application and how it works. Exact

implementation details can be found in the source code which is provided with every

download.

The program uses a simple star network [49] design. One particular point about this

client-server architecture is that the clients are the only devices which have the one-time

pads (encryption keys). The server effectively only contains encrypted data. The clients

operate on a request, response basis. Because of this, the clients which have the sensitive

encryption keys should have their firewalls configured to block all incoming traffic by

default and only receive incoming data as responses to outgoing requests that they have

specifically made to the server. The responses from the server are always authenticated

using a shared API Key and any malformed or unauthentic responses are immediately

discarded. This makes the client machines a lot more resilient to attack and exfiltration

of encryption keys. Assuming the client machines are single purpose and are not used for

untrusted web browsing or other activities this is a very small attack surface. To use it on

a multi-purpose machine, the program could be run in a virtual machine e.g.

CubesOS [50] to limit the attack surface.

The server should have a firewall as well which only allows incoming application data on

one port and optionally on an SSH port for management. The server application expects

a correctly authenticated packet from the client or it discards the request and responds

with a HTTP/1.1 404 Not Found error. Of course there is the potential for a 0-day

vulnerability [51] in the server application layers but compromising the server will not

compromise confidentiality or authenticity of messages as they are encrypted

end-to-end. If an attacker gained access to the server they could only interfere with the

server's operations to block messages from being sent or received at all.

6 How it works

The first user will run a TRNG. They can use their own or the one included with the

software. This random data is then divided into separate one-time pads. It is possible to

generate enough data for a few thousand messages in under a minute. A few thousand

messages is enough for 6-12 months of communication at a reasonable frequency of

messages sent per day.

Each user will be assigned specific one-time pads for sending messages. This prevents

re-use of a pad by another user. Re-using a pad can make cryptanalysis possible [52] so it

is very important to prevent this. The messaging protocol is explained in depth further

on.

Once the one-time pads are generated, the program can export them for each user to

encrypted text files. These should be saved directly onto removable flash media such as

MicroSD card, SD card, USB thumbdrive, CD, DVD, Blu-Ray Disc or portable hard drive.

The program requires the one-time pad database to be encrypted and protected with a

password. This adds additional protection so users do not need to securely erase the

pads or physically destroy the storage media after the one-time pads have been

transferred, unless they have very high security requirements. If the users need plausible

deniability that they are even carrying one-time pads in the first place then there are

some other precautions such as creating a hidden TrueCrypt [53] volume on the storage

media first before copying the pads into it.

To get the one-time pads to the other users, ideally they will arrange a physical meetup.

This is to create a secure channel [54] or air gap [55] to deliver the one-time pads which

ensures the encryption keys are not intercepted or compromised by transferring them

over an insecure network like the Internet. Key exchange is the user's responsibility and

the best method is to hide in plain sight. There are a few solutions that will usually work:

Meeting the other user/s in person for a coffee, drink, lunch or dinner provides an

innocent cover for the exchange of encryption keys. If a user is going about their daily

activities this is the least suspicious option and the most likely to succeed.

A dead drop [56]. Arrange the time and place of the dead drop in person or using

another method, but do not arrange this over an insecure channel.

If the country a user is residing in does not inspect internal mail, a sealed

(tamperproof) courier envelope can be hand signed and sent with reasonable

assurance that it won't be compromised. If the package appears to be opened on

delivery, the encryption keys must be considered compromised and not used.

International mail is sometimes opened by Customs [57] so it is not a reliable method.

It would not be difficult to hide an encrypted MicroSD within something else though.

Usually it is not difficult to get a laptop, portable hard drive, MicroSD card, or SD card

through Customs at national or international airports. Users can also hide them in

their carry-on luggage or on their person. If the government is allowed to scan

personal phones or computers as people are going through Customs then they may

need to use steganography [59] to hide the one-time pads within their vacation photos,

videos or other files. If Customs request a closer look at the contents of their devices

by forcing them to disclose their passwords or encryption keys [251], then the user must

keep an eye on exactly what they are doing and that the device is visible at all times. If

Customs take the device to an area where it is no longer visible to the user, or they

insert any other devices into the laptop such as a USB drive, then they could have

loaded malware onto it. These devices must then be considered compromised and

discarded.

Governments and diplomats also have the option of using a diplomatic bag [60] to

transfer items to another country which have diplomatic immunity from search or

seizure under the Vienna Convention on Diplomatic Relations [61].

The one-time pads absolutely cannot be sent via a less secure channel such as the

Internet even if using the best public key, block or stream cipher encryption there is.

This reduces the security to be only as strong as the cipher used and the perfect

secrecy [62] that the one-time pad provides is lost.

Some people complain about having to deliver the one-time pads physically as if this is

some impossible, arduous task. This line of thought is entirely devoid of reality. There is

no actual difficulty in storing some data on a portable memory stick and visiting

someone in person to give it to them.

As the one-time pads are in transit it is important to keep them secured on one's person

at all times. They should not be left anywhere unattended and kept in a zipped up pocket

to prevent pickpockets. Ideally they could have a tamper evident [63] seal as well.

Once the one-time pads are safely delivered and the server is set up, each user will load

them into the program and begin chatting. There are extra security considerations listed

further on but it will be important to erase the text file containing the one-time pads

from the removable media once they are loaded into the program. Storing the one-time

pads and running the software from within an encrypted container on the removable

media will help mitigate most issues. VeraCrypt / TrueCrypt [78] and portable Firefox [79]

can be used for this.

7 Server configuration

The server basically functions as a temporary database store for the encrypted messages.

One user leaves encrypted messages on the server and the other users can retrieve them

when they are able. If both users are connected at the same time it is possible for real-time

chat, plus or minus a few seconds. The messages are removed immediately from the server

after they are read by all users.

The server is user owned and operated which means users are in complete control of the

communications. No-one else knows about the server so this keeps it off the radar of the

intelligence agencies, as opposed to having a central server somewhere that everyone on

the Internet is using. If everyone was using a single server it leaves it as a single point of

failure and the intelligence agencies can raid it [80], hack it [81] or shut it down [82] with a

court order. There is no useful data for them on the server but they would be able to shut

down a lot of user's of communications at once, at least until someone set up a new server.

The server code provides a REST [83] based API [84] using JSON [85] which will run on the

Apache [86] 2.4.x web server, MySQL [87] 5.7.x database and PHP [88] 7.0.x programming

language. PHP was chosen because it is a memory safe [89] language, fast to develop in and

fast to deploy along with a basic LAMP stack [90]. In a future version, the design may be

ported to another server side language, database and web server that are considered more

secure. The straightforward JSON REST API interface should enable the client to connect

with multiple different backend code bases and users can implement the one of their

choosing.

At the moment, to get the server side running all that is needed is to download and verify

the server code, run a basic bash script which installs and configures everything that is

required. The script runs on Ubuntu server 16.04.x [91] but there is also an easy to use

guide [92] with screenshots for users wanting to use a different Linux distribution. Users can

install a server their own network, or pay for a cheap VPS [93] somewhere. It is not

recommended to use a VPS in the US to rule out the possibility of the provider being issued

with a National Security Letter (NSL) [94] which would compromise security of the server.

8 Server authentication protocol

A symmetric key based authentication protocol is used to securely authenticate the

requests and responses with the server API. This replaces TLS which secured the server

API credentials (username & password) in transit in versions up to 1.2. The reason for this

was mainly to simplify installation, avoid Certificate Authorities [46] [47] [95] [96], have

resistance against active MITM attacks [97] and quantum computers [36]. There have also

been major security problems with common TLS implementations such as OpenSSL [98],

GnuTLS [99] and iOS [100] which have led to a loss in confidence in these programs which

have poor code quality and may be hiding other NSA backdoors.

8.1 Design goals

Authenticate all API requests to the server to verify they are from valid server users.

Authenticate all API responses from the server to verify the response came from the

legitimate server, not an attacker.

Mitigate passive MITM attacks where an attacker tries to steal the API credentials in

transit.

Mitigate active MITM attacks where an attacker attempts to send fake responses to/from

the server or impersonate the server.

Mitigate replay attacks and reject any request/response if the data was modified in

transit.

Prevent a request to the server being modified by an attacker to perform a different API

action.

Mitigate quantum computer attacks on the protocol.

8.2 Limitations

The server administrator will control the server and be a user of the chat group's

operating on that server as well. The server administrator will be a trustworthy person

not interested in interfering with his own chat group's communications. If a group of

users want to communicate with each other, but the server administrator is not included

in that group, then they should set up their own server. This rules out the server

administrator having the will to interfere with communications.

Users of the server have an interest in keeping the shared API key on the server a secret

to protect their own communications so they will not give that key to anyone else.

There is no need for each user having a separate API key on the server to send/receive

requests because the server administrator could access that key anyway and impersonate

them or simply edit the database record to alter which user the message came from.

There is trust between the users in the group communicating not to impersonate other

users in the chat group. Because every user in a group has access to all the same

one-time pads and same API key, it would technically be possible to pretend to be one of

the other users in the chat group. This also doubles as a deniable authentication [101]

protocol because every message sent could have been engineered to come from one of

the other users in the chat group.

Encryption for the server protocol is not required because individual messages are

encrypted using the one-time pads and signed on each client machine. Some

anonymised, non-critical meta-data is viewable if an attacker in a privileged network

position is passively watching the traffic. This may indicate a chat conversation is taking

place using this protocol. If this is a problem, the user can easily add TLS to the

connection and use a pinned certificate. Version 2.0 of the program will encrypt the

connection between the client and the server using a cascade stream cipher to hide the

meta data and to avoid relying on TLS. Hiding the meta data by sending only encrypted

binary blobs between the client and server will make traffic analysis and fingerprinting

much more difficult for spy tools like XKeyScore [102]. Without knowledge of the protocol

being used this means automated hacking tools that TAO agents [103] use will not know

whether a client machine is running this program or any other program sending binary

data. This lowers the likelihood of them being able to target the client machines with a

specific exploit for this program to extract the one-time pads or tamper with them.

The server protocol does not anonymise IP addresses from users connecting to the

server. If there is a requirement for anonymity, then users can tunnel their connection

through a SOCKS5 proxy in their web browser or tunnel their connection through the

Tor network.

8.3 Initial setup

A random 512 bit API Key is created using the TRNG included with the program and

entered into the configuration file on the server. The user can use SSH to access their

VPS, but ideally to get the key securely onto the server, the server could be hosted on

their local network running a web server with a static public IP that is serving to the

wider Internet. Storing the key in the configuration file prevents SQL injection attacks to

retrieve the key and also it saves a database lookup each request.

The API Key is given to each user in person (not using a key exchange protocol or sent

via an insecure network). This will be done in the initial key exchange between users as

the program can store the API Key and server address along with the one-time pads.

The protocol currently caters for 2 - 7 users per group. If additional chat groups are

required on the same server this can also be setup. The cap of seven users per group is an

arbitrary restriction and can easily be extended. With larger group sizes however, each

user gets less one-time pads allocated to them for sending messages. In future the

protocol could allow certain users who talk more often a greater allocation of one-time

pads for sending, e.g. one user broadcasting announcements to the other users.

8.4 Client API request

User creates a random 512 bit per request Nonce [106]. The server keeps track of sent

nonces to prevent replay attacks. The nonce is created using the Web Crypto API

getRandomValues [69] method.

User creates an API request including a group of data variables to send to the server as

part of the Message Packet. For example, this can contain the one-time pad encrypted

message and its MAC that the server will store.

Each request is sent with an API Action to perform on the server. This prevents the

attacker from changing what action to perform on the server because any change to the

data packet will alter the MAC.

The From User data indicates which user the message is from. The server uses this to

retrieve the correct key. All users on the server are coded to NATO phonetic alphabet [104]

names i.e. Alpha, Bravo, Charlie, Delta, Echo, Foxtrot and Golf. This allows some

anonymity when multiple servers around the world are using the same protocol. When

exporting the one-time pads, the user can assign call signs/nicknames to the chat users

within the group to override the default names. These nicknames are not transmitted to

the server because they are kept in the user's local storage next to the one-time pads.

A Sent Timestamp is included to indicate when the request was sent. This is a UNIX

timestamp [105] therefore both the client and server code use UTC time.

The server rejects messages received that are received more than +/- 60 seconds of the

received UNIX timestamp. The server and clients should be synchronized to an NTP

server. The 60 second allowance should be enough to counter any clock drift and subtle

differences between the server and client clocks.

The server rejects duplicate messages/replay attacks received within the allowed time

window by storing all received nonces and checking incoming message timestamps

against past received nonces. If the nonce is the same and same request is received twice,

then the second request will be invalid. Sent nonces are kept on the server for at least

120 seconds and then discarded by a separate cleanup process.

These variables are stringified into JSON and a MAC is calculated using version 1.3 of

the Skein [109] 512 bit (Skein-512) hash function on the JSON data:

MAC ← Skein-512(API Key || API Action || From User || Nonce || Sent Timestamp ||

Message Packet)

The client sends the JSON data and the MAC to the server. The server receives the

request, looks up the username and verifies it is a valid user for that chat group, then

verifies the request by recreating the same MAC with the data provided.

The server rejects invalid MACs, which will also mean any attempt to modify the data

sent will fail. The MAC validation method in the API is protected against timing side

channel attacks using a method very similar to Double HMAC Verification [110]. This

randomises the byte order for each comparison so measuring timing differences for an

attacker is practically impossible. The differences in this program are that it uses the

secure hash function Skein-512 rather than HMAC-SHA-2 and some random data is

introduced for each comparison as an added security measure:

function constantCompare(Calculated MAC, Received MAC)

{

Random Data ← Collect 512 bits from /dev/urandom

Hash A ← Skein-512(API Key || Random Data || Calculated MAC)

Hash B ← Skein-512(API Key || Random Data || Received MAC)

return (Hash A === Hash B)

}

Failed requests can be re-sent manually by the client which will use a different Nonce,

Sent Timestamp and MAC.

The program also Base64 [110] encodes the entire packet before sending in preparation

for version 2.0. In version 2.0 the packet will also be encrypted between the client and

server and then Base64 encoded. The data going back and forth will essentially just be a

random binary blob. This will help disguise meta data and make it much harder for spy

agencies to fingerprint the traffic as definitely originating from this program and prevent

them targeting the client machines or server with automated TAO hacking tools [103] or

malware that has been mentioned in the Snowden revelations. The current version will

just provide an extra annoyance to the Five Eyes agencies who will need to update their

XKeyScore [102] detection rules and decode the Base64 data first in order to analyse it.

8.5 Server API response

On any valid server requests, the server signs the response with the API Key so that the

user knows the response from the real server. Invalid requests throw an

HTTP/1.1 404 Not Found error. This means an attacker does not even know if there

is a valid application or web page on the web server if they do not have the API Key to

make a valid request. All invalid requests respond with the server pretending it is unable

to find what the attacker is looking for. This is similar to standard firewall behaviour by

just failing to respond at all when an attacker is scanning for open ports on a machine,

rather than responding with a distinct 'closed' response which indicates there is

something there.

The Server Message Packet contains data sent from the server including status

responses and the one-time pad encrypted messages.

The original Client Request MAC is included in the server's response MAC calculation so

the client can be sure it is receiving a response to the original request.

The Server Message Packet is stringified into JSON and a MAC is calculated using the

Skein 512 bit hash function on the JSON data:

MAC ← Skein-512(API Key || Server Message Packet || Client Request MAC)

If the MAC does not match on the client then the response is not actually from the server

and will be discarded. A warning will be shown to the user that interference has

occurred.

On a successful request and response the client will process the data received from the

server, decrypt any received messages, check for XSS attacks and render the messages

on the client.

9 Preventing information leakage and traffic analysis

The program ends decoy messages at random intervals to other users in the chat group to

prevent information leakage [113] about when real messages are sent and to frustrate traffic

analysis [65]. The technique used is similar in principle to the Chaffing and Winnowing [114]

cryptographic technique. On starting a chat session, each client will generate a random

number between 1000 and 90,000 using the browser's CSPRNG [69]. A timer will be started

and after this number of milliseconds have elapsed the program will generate a random

string of bytes up to 56 bits bits in length. Using the accuracy of milliseconds rather than

seconds gives more randomness for each timer interval. Otherwise every decoy message

would be sent on evenly rounded seconds and an attacker could determine that they were

decoy messages.

The program will then check if these 56 bits exist as a pad identifier in their own set of

one-time pads. If that pad identifier already exists, which is quite rare, then it will skip

sending a decoy message for this interval, generate a new random number and try again

after that many milliseconds have elapsed. If the pad identifier does not already exist, then

the program will send a decoy message to the other users in the chat group. The other chat

group users will safely ignore the decoy message as the pad identifier does not exist in their

copy of the one-time pad database for the user that is sending the message. To send a decoy

message the program simply generates a further random 1480 bits using the browser's

CSPRNG [69] and concatenates that to the end of the 56 bit random pad identifier, thus

forming a random string consisting of 1536 bits which is the same size as a regular

one-time pad and message packet. This method also avoids burning real one-time pads on

decoy messages which would be wasteful.

The random message packet is sent to the server and left on there for the other chat group

users to collect. It effectively looks no different than a regular message being sent. The

other chat group users will download it, determine it is not a real message because the pad

identifier does not exist in the set of pads belonging to that user and discard it. The other

users may not be saying anything but each client that is connected to the server will be

sending decoy messages to other users in the group at random intervals. If two or more

clients are left unnattended it can look like an entire conversation is taking place without

doing anything. This disguises when real messages are actually sent by the users. An

outside attacker that can monitor all network traffic has no way of determining whether a

message sent or received is a decoy or a real one.

If a client is online but there have been no real or decoy messages received from other chat

clients for 5 minutes then the decoy timer will stop. This is so it doesn't appear like one

user is just talking to themself. If another client comes online again and sends a real

message or decoy message then the first client will start up their timer again on a random

interval to keep sending decoy messages. This continues until a user quits the program or

all other users are offline for over 5 minutes. This is more than the maximum random timer

interval (90 seconds) so there is some overlap when users are coming online/offline. These

intervals may be customisable via the UI in future versions or further optimised for

network bandwidth usage.

An added bonus of this functionality is that if a user has come online and received a new

decoy message from another user they can know that the other user is most likely online

(+/- 90 seconds) without any other kind of signalling protocol being needed. The program

will also show that the other user is online immediately if a real message is received within

the last 5 minutes as well.

10 Using Transport Layer Security (TLS) / HTTPS

Because of the new server authentication protocol in version 1.3, using TLS is not

mandatory anymore. However it can be added as an optional layer of security to help

mitigate monitoring from lower level attackers, for example when using the program in a

workplace, public WiFi hotspot or home connection where an employer, casual hacker or

ISP could monitor the connection. TLS will not stop a nation state attacker [45] like the NSA

as it is possible they have obtained copies of the root keys for most Certificate Authorities

anyway by using National Security Letters [94], therefore they can perform an active

MITM [44] attack as traffic is passing through the Five Eyes [5] alliance countries (USA, UK,

Canada, Australia and NZ). It is also possible they have quantum computers [36] by now.

The public key exchange protocols used in TLS are vulnerable to quantum computers, as

are most of the common cipher suites which use symmetric keys of only 128 bits. Key

lengths of 256 bits are the minimum required [116] to remain safe against quantum

computers in the immediate future. Care must also be taken to use a good cipher suite

order to have forward secrecy and use the highest quality ciphers available.

Users still wanting to use TLS and don't mind the extra effort to configure it are

recommended to generate a strong (4096+ bit RSA) self-signed certificate themselves

using the guide on the site [117], install it on the server and deliver the fingerprints of the

certificate to the chat group users at the same time as the one-time pad key exchange which

they can manually verify when first connecting to the server.

11 User Chosen TRNG

The software allows a user to import truly random data directly from their own trusted

entropy source. This could be a hardware RNG [22], physical entropy source or even

capturing the output from Linux/Unix's /dev/random [70]. This gives the user some

flexibility and can allow for creating a lot more one-time pads than can be created using the

TRNG included with the program. Because the user can freely choose to use their own

entropy source for creating the one-time pads, this rules out any possibility that the author

of the program is interested in restricting the user to use a poor quality random number

generator which would expose the user to covert surveillance.

Users can change the file type of the file they are importing from pure binary, to a plain text

file containing hexadecimal [186] symbols or Base64 characters. Once uploaded,

randomness tests found in FIPS 140-2 [124] will be run on the random data to ensure that

the imported random data is up to a minimum acceptable level. If the tests pass, the user

can export the random data and the program will split up the random data into separate

one-time pads for use with the program. Users do not have to rely on the FIPS 140-2 tests

alone, they can of course run any number of external randomness tests on their data to

ensure it is of good quality before importing it.

12 Included TRNG

The new design of the True Random Number Generator (TRNG) included in version 1.5.2

onwards improves on the previous versions with new inspiration from two very good

papers: The Sources of Randomness in Mobile Devices [215] and Towards True Random

Number Generation in Mobile Environments [216].

This section describes the TRNG included with the program which gathers the entropy

contained in the shot noise [71] noise from a digital camera. The collected entropy is run

through a randomness extraction [252] process to ensure a uniformly distributed random

data.

In the papers mentioned above, their testing was done against the optical sensor noise by

capturing frames from the view finder with the lense cap still on. Independent testing of

their results shows that this does give some entropy in the resulting data. Through more

extensive testing described further on it is shown that even better entropy can be obtained

by taking high resolution photographs of the natural environment.

To prevent interference or bias by software noise reduction and compression, a digital

camera's RAW mode [74] should be used. The RAW image file should then be converted

as-shot (without post-processing) to a lossless format like PNG [75] or BMP [76] for the

TRNG program to process. This can be done with Photoshop or using free software such as

Shotwell photo manager [224]. This process best retains and preserves the optical sensor

noise.

Saving in a lossy algorithm like JPEG [77] may have unintended side effects from

performing optimisations on the photograph. Users can however verify the random data

from each step in the process, export the data and check if it passes various statistical tests

such as FIPS 140-2 Power-Up Tests [124], NIST SP 800-22 [248], ENT [249] and Diehard [250].

Not all users will have a camera capable of taking photographs in RAW format, so the

program also includes a tool to capture camera frames directly from a webcam using the

native HTML5 getUserMedia() [253] API. The user can then save the captured photographs

as lossless PNG files which can be loaded separately into the TRNG. If their webcam does

not produce large enough photographs and random data for a substantial number of

one-time pads, then there is another tool provided to help with this. The user can then load

multiple sets of random data produced by the TRNG and concatenate it together and

convert it into a single binary file. That binary file of random data can then be loaded into

the program and it will create the one-time pads from it.

12.1 Selecting quality photographs

Nature is random, unpredictable and always changing. For example, the sand on the

seashore changes every time the tide rolls in. Wave crests and currents change with the

weather and tides. Deciduous trees change depending on the season of the year. Trees and

leaves move in the wind. The sun strikes things in different angles and intensity throughout

the day, casting shadows in various directions. The variance of cloud cover and light

conditions alters the appearance of everything in different ways.

From a photographer's position they have a unique viewpoint of a scene in nature. They

can take a photo of anything in nature, giving an infinite number of possible photographs.

They can take photographs of things that are random in nature such as a macro [73]

(extreme close-up) shot of sand on a beach, grass, rocks or flowers. Or a regular photos of

bushes, trees blowing in the wind, wave crests in the ocean, or waves crashing against the

sea shore.

Photographs should be taken of things in nature e.g. sand, rocks, flowers, bushes and trees.

For smaller items like sand, macro mode should be used. For best results, all photographs

should be in focus as much as possible and taken with good exposure. Care should be taken

to avoid direct sunlight or overexposure in certain areas of the photograph. Photographs

should always be erased after one-time pads have been created from them and not left on

any storage device.

12.2 TRNG design

This full design is explained below:

The user selects two high resolution photographs of good quality. Ideally their photos

should be taken in RAW mode [74] from a standalone digital camera (if available), then

converted as-shot (without post-processing) to a lossless format such as PNG. There are

a number of open source tools available for the conversion.

1.

The program then loads the photographs into memory as sequential arrays of pixels.

The top left pixel would be the first element in the array, followed by the rest of the

pixels in that row (left to right), followed by the pixels in the rows below and so on. Each

pixel in the photograph contains 24 bits of colour information, encoded as separate Red,

Green, Blue and Alpha (RGBA) integer values. The alpha channel data is not used and is

discarded. For each remaining colour channel (RGB) they have 8 bits of information,

represented as a number from 0 to 255. If each pixel contained its own array of values,

all the data in the photograph would be represented in a format similar to:

[[120, 234, 123], [57, 23, 254], [14, 255, 0], ...].

For easier processing, this is converted to a sequential array format similar to:

[120, 234, 123, 57, 23, 254, 14, 255, 0, ...].

2.

For the first image, the first 3 colour channel values representing a single RGB pixel

are collected e.g. [120, 234, 123]. These values are then converted to binary

format:

[01111000, 11101010, 01111011].

i.

In the paper [215] mentioned earlier, the minimum entropy estimate was

approximately 1-3 bits per colour channel. This program takes a conservative

approach using the lower estimate of 1 bit of entropy per colour channel. The

program then collects the least significant bit [72] (rightmost bit) of each colour value:

[0, 0, 1].

ii.

These 3 bits are then XORed together e.g. 0 ⊕ 0 ⊕ 1 which results in the single bit 1.

This bit is then stored by appending it to an output stream of bits obtained from this

image.

iii.

The previous 3 steps (i - iii) are then repeated for the remaining pixels in the first

photo. This produces a full output stream of bits from the pixels in the first image.

iv.

3.

Step 3 is then repeated for the second image which produces a full output stream of bits

from the pixels in the second image.

4.

The two output streams from the first and second images are then XORed together to

create a combined output stream. In testing, occasionally one photo might have small

sections where the output was not uniformly random. The bits from the second image

help provide protection against faults in the first image and vice versa. This can happen

when there is a small section that is overexposed to sunlight e.g. a reflection or a small

gap through the leaves of a tree. If the two photos were of different sizes then the output

from this step will be truncated to the same number of bits from the smallest photo.

5.

The Basic Von Neumann Extractor [217] is then run on the combined output stream in6.

step 5 which is the final random data. This simple theoretic extractor is used to ensure a

uniformly distributed output in the combined output stream. This is better than using a

cryptographic hash function for extraction e.g. SHA-3 as these are not known to be

perfect or information-theoretically secure.

The data from steps 3, 4, 5 and 6 are then run through randomness tests. Black and

white and also colour bitmaps of the output can be displayed to the user for visual

analysis. If any failures occur the user can delete the images and try again with a fresh

set. The testing process is described in the next section.

7.

After successful processing and test analysis, the user should erase the original

photographs from the camera's memory card and the computer's hard disk. If full disk

encryption is used, only a regular deletion is needed.

8.

The final random data is then split it into separate one-time pads of 1536 bits each.9.

It is important to note that this algorithm does not use this collected entropy to seed a

PRNG, DRBG [122] or CSPRNG [123] to give an unlimited amount of random data. The aim is

to avoid stretching the available entropy over more bits. The program aims to be a true

random number generator so only high quality randomness is used. Each uniformly

random bit must be used to encrypt only one bit of the plaintext otherwise the security

proof of the one-time pad is lost.

12.3 TRNG testing tools

An important part of a random number generator is the ability to test the output. A few

methods have been provided for this:

The program allows the user to extract the random data from each step in the processing

to various formats i.e. binary file, ASCII binary text file, ASCII hexadecimal text file and

ASCII Base64 text file. Because the TRNG only outputs data from two images at a time,

there is also another tool to combine the random data from multiple text files and output

a single binary file. This gives users the opportunity to verify the data with external

randomness testing programs e.g. NIST SP 800-22 [248], ENT [249] and Diehard [250]. That

will allow them to run additional tests and assure them of the quality of the random

data.

For testing the random data within the program there are some simple statistical

random number generator tests included from FIPS 140-2 - Power-Up Tests [124]. These

include: The Monobit Test, The Poker Test, The Runs Test and The Long Run Test. The

goal is to add more automated tests in the future to prove the quality of the program and

improve on it in future versions of the software. The FIPS 140-2 test suite is run on every

20,000 bits of the random data at each step of the process.

If any of the tests fail after this, then one or both of the original source photographs may

not be good enough and different ones might need to be used. Although the pass

intervals for these tests is quite strict and can sometimes give false positives [219], it is still

a good indicator to rule out very bad source photographs. The following example shows

an example of the test result summary:

Looking at these results, the second image which was based on a JPEG image failed the

tests on the unconditioned least significant bits. This may not be a problem though as a

closer look at the tests might reveal it just failed one of the tests on a 20,000 bit segment

by being slightly outside of the accepted intervals. If a lot of the tests across multiple

20,000 bit segments were failing then this would be a very clear warning that the

photograph is not of good quality and another should be used.

The aim of the TRNG is that if one photo does not produce very good random test

results, then there is a second photo as a failsafe. Looking at the results after XORing the

least significant bits from the two images together, the tests are shown as passing. The

final Von Neumann extraction step ensures that the data is uniformly random. The users

should check that the final two steps which XOR the least significant bits of both images

together and the Von Neumann extraction step succeed or the photos should be

discarded. It does not matter so much if the unconditioned least significant bits from

either image fail slightly. These minor failures can be recovered from with the final two

steps. If the user finds two images that pass all the tests at every step, then this is the

best possible outcome.

The output from each step of the TRNG can also be viewed as a black and white

bitmap [125] image or colour bitmap image which lets a user do a simple visual analysis of

the output. People are very good at spotting patterns [126] and visualising the random

data allows them to use their eyes and brain for this purpose. If there is any structure in

the image this indicates a poor image source. It also gives a basic visual picture of the

TRNG's output.

To produce a black and white bitmap image, all the random data is converted to binary

and rendered as a bitmap. A black pixel with RGB values of [0, 0, 0] indicates a 1 bit and

a white pixel with RGB values [255, 255, 255] indicates a 0 bit. The height and width of

the image is determined by the square root of the number of bits that can be output. This

produces a square image and each pixel is rendered sequentially to fill the image row by

row. The output should look something like the image below at 100% zoom.

Good image

22,500 pixels (22,500 bits)

Bad image

22,500 pixels (22,500 bits)

To produce a colour bitmap image, all the random data is converted to binary. For each

8 bits, this is converted to a decimal value from 0 - 255. Then for every 3 decimal values

this represents the RGB values of a single pixel. The height and width of the image is

determined by the square root of the number of full pixels that can be output. This

produces a square image and each pixel is rendered sequentially to fill the image row by

row. The output should look something like the image below at 100% zoom.

Good image

22,500 pixels (540,000 bits)

Bad image

22,500 pixels (540,000 bits)

12.4 TRNG analysis and test results

For testing, a 12 MP Canon PowerShot G9 [127] digital camera was used. This is a 2008

model, high-end compact digital camera which allows taking photographs in RAW file

format [128]. Photos were taken in manual mode using the RAW file format to avoid using

the camera's default lossy JPEG file format. The RAW files were loaded into the open

source Shotwell photo manager [224] program, then converted as-shot to PNG. The original

camera images were 4032 x 3024 pixels.

FIPS test suite results

Tests were run by taking photographs of different patches of sand at a beach in macro

mode. These photos were then processed with the TRNG. The FIPS 140-2 tests were run on

all the outputs at each stage. An example of two photos of sand that were used in the

processing is presented below. The reference links contain the full size images and results.

Image 1 [228]

Image 1 LSBs Image 1 LSBs Image 1

B&W [229] Colour [230]

LSBs Test

Results [231]

Pass

Image 2 [232]

Image 2 LSBs

B&W [233]

Image 2 LSBs

Colour [234]

Image 2

LSBs Test

Results [235]

Pass

Next the least significant bits of both images were XORed together. This step does not

improve the results too much both original images are of very good quality. However it can

be a very good improvement if one of the images is poor quality.

LSBs XORed

B&W [236]

LSBs XORed

Colour [237]

LSBs XORed Test

Results [238]

Pass

Next the resulting bits were run through the Basic Von Neumann Extractor. After this step

the data should be uniformly random.

VNE B&W [239] VNE Colour [240] VNE Test Results [241]

Pass

NIST test suite results

Next, over 40 photographs of sand were tested. A few of the photographs that did not pass

the initial FIPS 140-2 tests for all steps were replaced. The ones that did pass the tests were

combined together into larger binary files of approximately 15 MB each.

The first test suite was NIST SP 800-22 [248]. The tests were done on the least significant

bits (LSBs), the least significant bits of images XORed together (XORed LSBs) and the

results after Basic Von Neumann extraction (VNE). The results are presented below:

LSBs XORed LSBs VNE

Full results link [242] link [243] link [244]

Total bits tested 121927680 121927680 112787840

Total of 0 and 1 bits 60944569 –

60983111

60964217 –

60963463

56393688 –

56394152

Number of bits

difference

38542 754 464

Percentage of 0 and

1 bits

0.499841 –

0.500158

0.500003 –

0.499996

0.499997 –

0.500002

For testing the unconditioned least significant bits the full number of bits was divided into

8 bitstreams. Of these bits only a few of the bitstreams had failures. For most, 8/8

bitstreams passed, however there were a few that had 7/8 bitstreams pass and a couple

with 5/8 or 6/8 bitstreams that passed. For the results in the XORed least significant bits,

this was tested as one bitstream and mostly passed except for a few minor failures in the

NonOverlappingTemplate test. After the Basic Von Neumann extraction which was tested

on one bitstream, the results were the strongest.

ENT and Diehard test suite results

For the next tests. the binary files were uploaded to the CAcert Research Lab Random

Number Generator Analysis site [222]. This site performed an independent test of the

random data against the ENT and Diehard test suites [223]. It was important to test the data

at each step of the TRNG, including the unconditioned and conditioned data. The site

required a minimum of 12 MB of random data in order to process the files so enough

photos were processed to meet this requirement. The results are presented below:

LSBs XORed LSBs VNE

CAcert full results link [225] link [226] link [227]

Entropy (->8) 7.999989 7.999989 7.999989

Birthday Spacing 0.124069 0.785778 0.090422

Matrix Ranks 0.135 0.718 0.149

6x8 Matrix Ranks 0.039 0.073 0.456

Minimum Distance Test 0.535812 0.560551 0.894059

Random Spheres Test 0.008233 0.816425 0.646940

The Squeeze Test 0.069099 0.343447 0.375119

Overlapping Sums Test 0.431508 0.010005 0.707685

LSBs – This was the result from Step 3 of the TRNG. This was the unconditioned least

significant bits of 10 images concatenated together into a 15 MB binary file.

XORed LSBs – This was the result from Step 4 and 5 of the TRNG. This was the least

significant bits of 10 unique images concatenated together and then XORed with the

least significant bits of another 10 unique images concatenated together. These 20

images produced a 15 MB binary file.

VNE – This was the result from Step 6 of the TRNG. This was the least significant bits of

20 unique images concatenated together and then XORed with the least significant bits

of another 20 unique images concatenated together. The resulting data was then run

through the Basic Von Neumann Extractor. These 40 images produced a 15 MB binary

file.

There was a minor note on the Random Spheres Test after testing the unconditioned least

significant bits. This was detected as 'potentially deterministic', however the test did not

fail completely. All of the files passed all the other statistical tests without any problems.

Other photograph options

Tests were also run on various other things in nature. All the unconditioned least

significant bits from these photographs passed the FIPS 140-2 tests. These are the best

options for photographs as they are constantly changing. Examples of these are shown

below:

Bark Berries Clouds

Flower Grass Leaves

Plants Rocks Sand

Shore Water Waves

Taking photographs of static things also worked well and the unconditioned least

significant bits passed all the FIPS 140-2 tests. These are less optimal photograph sources

however as they are static, which means only the lighting conditions and direction of the

photograph will vary in subsequent photographs. Examples of these are shown below:

Carpet Concrete Roughcast

Stone Wood

Dark frame options

Results that did not work very well were dark frames where photographs were taken with

the lense covered to simulate a lense cap being on. The data was not strong enough to pass

most of the FIPS 140-2 tests. In testing there was some noise on the least significant bits

and the pixels were not completely black (0, 0, 0), but the resulting data was far from

uniformly random. An example is shown below:

Dark frame

In testing it required the least significant bits from four dark frame photographs to be

XORed together to be strong enough to pass the FIPS 140-2 tests. Comparing this to the

regular photographs tested above, they only required the least significant bits of a single

photograph to pass the tests so they should be preferred compared to dark frame

photographs.

These results differ from the results in the two papers [215] [216] mentioned earlier which

suggested using a dark frame to capture the thermal noise in the camera. This can likely be

attributed to the different methodology. It can be shown that letting in a small amount of

light into the frame and taking a photograph of a static cream painted wall was good

enough to let more noise onto the camera sensor and produce a strong result for a single

frame that passed the FIPS 140-2 tests. An example is shown below:

Painted wall

Testing was also done by taking photographs with a Logitech C920, which is a high end

webcam capable of recording video in high definition (1080P). A regular laptop webcam

with 2MP was also tested. In both cases, the test results were similar to the Canon G9 and

the least significant bits of all images passed the FIPS 140-2 tests.

Summary

In summary, the best results are achieved using the macro mode on a digital camera and

taking close-up shots of things like sand. Shooting a variety of things like rocks, trees or

water can also give good results. Users can experiment taking photos of various things in

nature on their own. Users should take care to verify the unconditioned random data

passes the tests from FIPS 140-2. This will give reasonable confidence for using it as

one-time pads..

With this TRNG and a single 12 MP photo, it is possible to produce enough random data

for approximately 1980 messages. For a group of two people this would be 990 messages

per person which is enough to last for a reasonable period of time. If more messages are

required then users can can generate multiple sets of one-time pads and load additional

sets as necessary when they run out. It is also possible to concatenate the random data

from multiple sets together using a tool included in the program. The only limit will be the

amount of local storage that can be used in the browser.

13 Pad storage and exporting data

After the one-time pads have been created, they must be exported separately for each user.

Part of this process automatically determines who will be sending with what one-time pads.

The one-time pads are divided up equally amongst the group members and allocated to

each user for sending. This prevents one user from accidentally sending with another user's

allocated one-time pads, causing a two-time pad situation and allowing for cryptanalysis.

All users get read access to the other group member's one-time pads, so when a message is

received from another user they can decrypt it.

This screen contains all the details that will be saved to each export file for each chat

group user. The person creating the chat group should input the server address and API

key here so that when other users import the file they do not need to do any additional

configuration. All they need to do then is load the one-time pads into their browser and

start chatting.

A server API key can be generated from this screen. The program effectively takes 512

bits from the start of the extracted random data and uses it as the key. This 512 bits is

now no longer available for use as a one-time pad. This API key is manually loaded up

into the server's config file by the user. After this the user can test the connection to the

server to make sure everything is set up correctly.

The user can also define how many users will be in the chat group. They can customise

the user's name or nickname next to the call sign. The custom nickname is kept locally

and stored with the one-time pads. This way each chat group user has the same set of

names and knows who is in the conversation. The custom nickname is not sent over the

network, only the call sign (alpha, bravo etc) is sent as part of each network request so

the server can send/receive messages for that user. This means only the real users know

who is talking to who. If there are multiple people and chat groups around the world

using the same protocol and different servers, then it makes traffic analysis even more

difficult.

There are 2 export options for using the one-time pads with the program. Export to

clipboard lets the user copy/paste the pads from memory into wherever they want to

put them. Export to text file pops up a save dialog to save the pads to a text file on

their filesystem or portable storage media.

Saving to removable media such as a CD, DVD, MicroSD, SD card or USB drive will be

convenient and portable. Flash memory is at least small and compact which means the

user can conceal, destroy or get rid of it quickly and easily. The most secure option may

be to use CDs/DVDs which can be written once, transferred to each user, then destroyed.

The most convenient option is to get a USB thumbdrive, with a portable version of

Firefox [79] loaded on it. Then save the one-time pads in there as well. Load up Firefox

and then load the one-time pads from inside it. Now the program is portable and the

user can take it with them on a keyring, run it from any trusted computer (e.g. home or

work) and stay in contact wherever they are.

Hard drives and flash memory are difficult [131] to remove data from quickly and

securely. It is best if sensitive data like encryption keys do not get written to the disk in

the first place. The program allows for the one-time pad database to be encrypted and

authenticated before transport. This is detailed in full in the next section.

The password/passphrase used should have at least 256 bits of entropy for transport

which is estimated to be 41 ASCII characters. In version 2.0 the database will be

encrypted all the time so users may opt for a shorter password for faster access on their

mobile devices. The password strength estimator calculates a rough estimate of the

password strength in bits as the user is typing. Password characters are assumed to be

drawn uniformly randomly among the most commonly used characters on a standard

US keyboard. This is calculated as uppercase A-Z (26 characters) plus lowercase a-z (26

characters) plus numbers 0-9 (10 characters) for a total of 62 characters. This will

produce a more conservative entropy estimate than if special characters were included

as well (i.e. the full 95 ASCII printable characters). The formula will also take into

account the Password Based Key Derivation Function (PBKDF) [28] iterations which

roughly increases the security in bits by log2(Iterations) e.g. log2(10,000) which is

approximately 13~ bits. The full formula for calculating the entropy of the password in

bits is as follows:

Entropy Bits ← (Number of Password Characters ⊗ log2(62)) + log2(Number of
PBKDF Iterations).

14 One-time pad database encryption and authentication

The program can encrypt and authenticate the one-time pad database prior to export and

transportation to other chat group users. The program uses a cascade of two strong stream

ciphers for encryption and a cascade of two modern MAC algorithms for authentication.

This provides additional assurances such as:

The database has not been tampered with in transit. An attacker cannot replace the

one-time pads with ones that they already know which would allow covert surveillance,

set all the one-time pads to zero bits which would nullify the encryption, subtly duplicate

the one-time pads in the database which would allow for two-time pad cryptanalysis, or

swap pads between users which would cause indecipherable messages for other users in

the group.

The database is not easily readable if stolen or seized in transit. A computationally

unbounded adversary could in theory break the cascade encryption after many decades

of brute force attack with a quantum computer, but this is very unlikely. If a user knew

that their one-time pad database was stolen or seized (e.g. at an international airport)

then they would notify the other chat group users to stop using that set of one-time pads

immediately and switch to a different set. Then only the small number of messages

which had been sent since one-time pad generation until that point in time would be

compromised. Because only a small number of messages would have been sent during

this time and the database is very difficult to crack, then this reduces the likelihood an

attacker would even try mounting a brute force attack.

After successful transportation of the one-time pads without interception or tampering,

the database can be quickly deleted and the rewritable transport media (e.g. MicroSD

card, SD card, USB drive) can be re-purposed for something else which would overwrite

the database eventually anyway. Because an attacker does not even have the encrypted

one-time pad database, it is not absolutely necessary to secure erase the media or

destroy it (e.g. write once CD, DVD media) unless absolute security is required.

In version 2.0 of the program, which is currently in development, the same encryption will

be used to secure the database as it resides on the client devices. Pads will be decrypted as

they are needed, used to encrypt a message, then deleted from the database. The program

does not currently provide any steganography for transporting the database, so if this is

needed in the near future it is advised to use a TrueCrypt 7.1a hidden volume [132] [133] and

store the one-time pad database inside it. If an attacker forces the user to reveal the

password they can reveal the outer volume password which would reveal decoy files, and

they would still have plausible deniability that a hidden volume containing the one-time

pads does not exist.

14.1 Cascade database encryption

To encrypt each one-time pad in the database a cascade of two strong, reputable stream

ciphers is used. The ciphers are the Advanced Encryption Standard (AES) [134] in Counter

Mode [135] (AES-CTR) and Salsa20 [136] with the full 20 rounds. AES, which is based on the

Rijndael algorithm by Vincent Rijmen and Joan Daemen, won the Advanced Encryption

Standard competition [137]. A reduced 12 round variant of Salsa20 (Salsa20/12) by Daniel J.

Bernstein was selected for the eSTREAM software portfolio [138]. The full 20 round variant

of Salsa20 was chosen for additional security. Two random 256 bit keys are generated

using the TRNG at export time. One key is used for AES-CTR and the other for Salsa20. A

different nonce is used for each one-time pad to be encrypted in the database. The design

Exclusive ORs (XORs) the AES-CTR keystream and the Salsa20 keystream together then

XORs the combined keystream with the plaintext one-time pad.

The reason a cascade of two stream ciphers is used is because there may be secret

cryptanalytic techniques against a cipher such as AES when it's used to encrypt something

on its own. A recent publication of the Snowden documents revealed that NSA have their

own in-house (non public) cryptanalytic techniques against AES and other ciphers [18].

While a trivial reversal of a strong cipher without any additional information is highly

unlikely and would be indicative of the algorithm being very weak, it may be more likely

that a single encryption algorithm becomes vulnerable [140] to NSA when they have access

to known plaintext [139] or chosen plaintext [141] encrypted by the algorithm as well.

With a stream cipher cascade, the separate keystreams are XORed together. There is no

way to determine which bits belong to each cipher's keystream if each cipher is suitably

strong on their own. Even if there is a cryptanalytic break in AES, an attacker does not have

access to the raw keystream created by the AES algorithm because there is still plaintext

and the Salsa20 keystream mixed in with it. Even if an attacker knows a lot of the plaintext

they still won't be able to decrypt the AES layer of encryption because the layer underneath

is a random Salsa20 keystream which they do not know. Likewise if they tried to decrypt

the Salsa20 encryption layer first, the next layer is a random AES keystream so they would

not even know when they have decrypted the first layer correctly. The best remaining

attack against a stream cipher cascade may be a brute force of both keys which would take a

very long time.

The following describes the encryption for the database:

Key1 ← A 256 bit random key for AES-CTR generated by the TRNG

Key2 ← A different 256 bit random key for Salsa20 generated by the TRNG

Nonce1 ← A unique 96 bit nonce for AES-CTR, changing for each database row (one-time

pad) to be encrypted

Nonce2 ← A unique 64 bit nonce for Salsa20, changing for each database row (one-time

pad) to be encrypted

Counter1 ← A 32 bit counter for AES-CTR, starting at 0 for each database row and

incrementing by 1 for each block being encrypted

Counter2 ← A 64 bit counter for Salsa20, starting at 0 for each database row and

incrementing by 1 for each block being encrypted

One-Time Pad ← The last 1480 bits of the one-time pad to be encrypted and stored in the

database. The public 56 pad identifier at the beginning is not encrypted.

Keystream1 ← AES-CTR(Key1, Nonce1, Counter1)
Keystream2 ← Salsa20(Key2, Nonce2, Counter2)

Row Cascade Encryption ← Keystream1 ⊕ Keystream2 ⊕ One-Time Pad
Row Cascade Decryption ← Ciphertext One-Time Pad ⊕ Keystream2 ⊕ Keystream1

The reason to encrypt each row individually rather than encrypting the entire database

at once is for performance. Also in the upcoming version 2.0 of the program the

database will always be encrypted on disk, so it is advantageous to only have the small

keys in memory and decrypt each row as needed then delete the row.

The keys remain the same for the entire database but the nonce changes for each

database row to be encrypted. The keys for encryption and authentication are obtained

from slicing the required number of bits off the beginning of the TRNG generated

random data. This ensures the keys are not used for anything else and the one-time pads

are generated from the remaining random data.

Because AES in Counter Mode does not need a random IV, a unique nonce is used for

encrypting each row. Each one-time pad has an index number in the database starting

from 0 up to the number of pads in the database. One user might have index numbers

from 0 - 1000 in their set of one-time pads and the next user might have index numbers

from 1001 to 2000 in their set. This ensures there is a unique index number for each row

in the database. This number is converted to hexadecimal and left padded with 0 bytes (

00 in hexadecimal) up to 96 bits in length. The block counter for AES is 32 bits in length

starting at 0 (00000000 in hexadecimal) for each row and increments by 1 for each

subsequent block being encrypted.

The nonce for Salsa20 is 8 bytes, so the pad index number is is converted to hexadecimal

and left padded with 0 bytes (00 in hexadecimal) up to 64 bits in length. The block

counter for Salsa20 is also 8 bytes starting at 0 (0000000000000000 in hexadecimal)

for each row and increments by 1 for each subsequent block being encrypted.

The first 56 bits of a one-time pad is the pad identifier which is public and used to

lookup the correct pad in the database when another user sends a message. The pad

identifier is not encrypted and removed prior to encryption so only the remaining 1480

bits of the random pad are encrypted. This removes any remaining known plaintext for

an attacker if they attempt to decrypt one of the one-time pads.

There is some pad database information which is stored in the client database as well

(program version, custom user preferences, server address, server key, user callsign and

list of group user nicknames). This is JSON encoded to a string and encrypted with the

same database keys, but the static 96 bit nonce ffffffffffffffffffffffff in

hexadecimal for AES-CTR and the static 64 bit nonce ffffffffffffffff for Salsa20

is used for encryption. Because each pad index number is converted to a nonce and in

the language being used integers cannot exceed 253 - 1 (9,007,199,254,740,991), this

nonce cannot be accidentally be re-used for encrypting a pad, therefore it is used it to

encrypt the pad database information.

14.2 Cascade database authentication

Using the safe principles of Encrypt then MAC [142] [143], the program creates a MAC of the

database row information including the encrypted one-time pad by using a cascade MAC.

The chosen hash functions for this are Keccak-512 [118] with the capacity set at 1024 (same

as the finalised SHA3 [144]) and Skein-512 [109]. Each MAC digest is calculated

independently by computing Hash(Key || Data) with independent keys for each algorithm.

The resulting digests are then XORed together to hide the individual MAC digests from

independent cryptanalysis in case one of the algorithms has a flaw. Keccak and Skein are

newer hash functions that are not vulnerable to length extension attacks with this simple

MAC construct.

The following describes the authentication for each row in the database:

MAC Key1 ← A 512 bit random key for Keccak-512 generated by the TRNG

MAC Key2 ← A different 512 bit random key for Skein-512 generated by the TRNG

Nonce1 ← A unique 96 bit nonce based on the row index number which was used by

AES-CTR to encrypt the one-time pad

Nonce2 ← A unique 64 bit nonce based on the row index number which was used by

Salsa20 to encrypt the one-time pad

User Callsign ← The user callsign as a string (e.g. alpha , bravo etc) which this one-time

pad is allocated to for sending

Pad Identifier ← The first 56 bits of the one-time pad

Ciphertext One-Time Pad ← The last 1480 bits of the one-time pad which is encrypted by

AES-CTR and Salsa20

MAC1 ← Keccak-512(MAC Key1 || Nonce1 || Nonce2 || User Callsign || Pad Identifier ||

Ciphertext One-Time Pad)

MAC2 ← Skein-512(MAC Key2 || Nonce1 || Nonce2 || User Callsign || Pad Identifier ||

Ciphertext One-Time Pad)

Row Cascade MAC ← MAC1 ⊕ MAC2

The resulting MAC tag is stored along with the other information for each row. When the

database is being loaded on a client machine, the program will calculate the MAC again

for each database row and verify that the hash digest matches the stored MAC tag for the

row. If there is a match for each row then no tampering has occurred, otherwise a

warning will be shown to the user. If the warning is shown, then the user should

abandon the database of one-time pads and look to transfer a new set.

In this version of the program, the database is verified only when loading the pads

initially after they have been exported and transported. Currently after the pads are

verified and decrypted, the database is saved to the client PC in an unencrypted state.

Running the application and browser profile from inside a TrueCrypt volume is still

recommended for this release to keep the one-time pads encrypted locally on the disk. In

the future, version 2.0 of the program will have the one-time pad database be fully

encrypted and authenticated at all times. Each one-time pad row will need to be verified

and decrypted before sending or receiving a message. The reason for why this

functionality is not available in this version is that the application needs to be converted

to a Single Page Application first. Currently each web page is run separately and there is

no in memory data sharing between pages. Converting to a single page application will

reduce code duplication and mean the master password only needs to be entered once

on startup, not once for each page opened.

The pad database information which is stored in the client database (program version,

custom user preferences, server address, server key, user callsign and list of group user

nicknames) is also authenticated using the same cascade MAC. This is checked before

decrypting and importing the pad database information. In version 2.0 it will be verified

each program load to ensure database integrity.

14.3 Database index authentication

The program also creates a MAC of the database index for each user's set of one-time pads

by combining the pad index numbers for each row and then creating a cascade MAC. This

ensures that the all user's one-time pads in the database have not been added, swapped,

reordered, removed or otherwise tampered with.

The following describes the database index MAC:

MAC Key1 ← A 512 bit random key for Keccak-512 generated by the TRNG

MAC Key2 ← A different 512 bit random key for Skein-512 generated by the TRNG

User Callsign ← The user callsign (e.g. 'alpha', 'bravo', 'charlie' etc) of the set of pads being

authenticated

Pad Index Number ← The index number of the row in the database for the user's set of

pads

MAC1 ← Keccak-512(MAC Key1 || User Callsign || Pad Index Number0 || Pad Index
Number1 || Pad Index Number2 || ...)

MAC2 ← Skein-512(MAC Key2 || User Callsign || Pad Index Number0 || Pad Index
Number1 || Pad Index Number2 || ...)

Index Cascade MAC ← MAC1 ⊕ MAC2

When a message is received or sent that pad is deleted from the database so the pad

index MAC needs to be updated every time a new message is received or sent. This

functionality will be added in version 2.0 when the database will be encrypted and

authenticated at all times. At the moment in this version, the full verification of the index

is only performed as part of the initial importing of the one-time pads after

transportation. This is mainly to verify that the transfer took place without tampering.

Version 2.0 will be much more comprehensive and ensure that the database integrity

and authenticity is valid at all times.

Including the user callsign in the MAC means that an attacker cannot swap out one-time

pads from one user into another user's set of pads, forcing a two-time pad situation and

allowing cryptanalysis.

15 Protection of database encryption and authentication keys

The actual database encryption and authentication keys which were generated by the

TRNG are stored in inside the database with the rest of the other information. To protect

these keys while they reside in unprotected storage a simple key wrapping [145] construction

is used.

15.1 Database master key derivation

To encrypt the actual database encryption and authentication keys, a master key is created

by deriving it from a password, two salts and two separate Password Based Key Derivation

Functions (PBKDFs) [28]. The current PBKDFs are a temporary measure until there is

library support for Argon2 [151] which was the winner in the Password Hashing

Competition [152]. A good fallback solution would have been to use bcrypt [153] or scrypt [154]

which use a lot of memory as well but there is no verifiable library support for these

functions in the programming language being used.

The following describes the cascade PBKDF construction:

PBKDF-Keccak ← A PBKDF based on the Keccak hash function with a 512 bit output

PBKDF-Skein ← A different PBKDF based on the Skein hash function with a 512 bit output

Password ← A strong password/passphrase entered by the user

Salt ← A 1536 bit random salt generated by the TRNG

Keccak Iterations ← The number of iterations to be performed by the Keccak PBKDF with

the default set at 10,000

Skein Iterations ← The number of iterations to be performed by the Skein PBKDF with the

default set at 10,000

Keccak Salt ← Salt || Keccak iterations
Skein Salt ← Salt || Skein iterations
Derived Key A ← PBKDF-Keccak(Password, Keccak Salt)
Derived Key B ← PBKDF-Skein(Password || Derived Key A, Skein Salt)
Master Key ← Derived Key A ⊕ Derived Key B

The first PBKDF is PBKDF2 [146] with the Keccak-512 hash function. The output key size

is set at 512 bits. A 1536 bit random salt which was generated by the TRNG is used. The

default number of iterations is set at 10,000 which takes about 8 seconds to compute on

a single core of an Intel Core i5 running at 3.3 GHz.

Note that Keccak can be used in conjunction with HMAC [147] which is what PBKDF2

uses internally. The reason to use Keccak instead of SHA-2 [148] or SHA-1 is because it is

a newer hash function and it is not designed by the NSA. Anything designed by the NSA

is avoided by this program in case it has deliberate secret weaknesses that are unknown

to the academic community. An algorithm designer is in the best position to design an

algorithm with a subtle weakness. In the case of SHA-2 a weakness may not be

discovered for many years if academia is well behind the state of the art in cryptography.

For SHA-1 it barely lasted a few years before needing to be phased out due to significant

flaws. We know at one point the NSA were 20 years ahead in cryptography [149] when

they knew about differential cryptanalysis before anyone else. They are likely still ahead

by a large margin. Using Keccak which was the winner in an open competition and

which has a design which is completely open is considered much safer. In comparison to

SHA-2, Keccak should provide better entropy in the derived key, however it may be a lot

faster in hardware which would provide a slightly better advantage for an attacker

performing a brute force attack. However the main attacker to be considered is the NSA

and we can reasonably assume they have dedicated ASICs [150] and other hardware for

cracking password hashes which were derived using the most commonly used PBKDFs

simply because everyone in the world is using those algorithms. By using the newer

Keccak algorithm this essentially forces the NSA to expend more money building new

dedicated ASICs or re-engineer their supercomputer code just to crack an encrypted

database created by this program. Even then they would still need physical access to the

encrypted database so they might not even bother trying.

The second PBKDF uses the Skein hash function. The output key size is set at 512 bits.

The same 1536 bit random salt which was generated by the TRNG is used. The default

number of iterations is set at 10,000 which takes about 5 seconds to compute on a single

core of an Intel Core i5 running at 3.3 GHz.

The Skein PBKDF method is described in Section 4.8 of The Skein Hash Function

Family specification document. Quoting the document:

"The application stores a random seed S, asks the user for a password P, and then

performs a long computation to combine S and P." ... "An even simpler PBKDF is to

simply create a very long repetition of S and P; e.g., S || P || S || P || S ..., and hash that

using Skein. (Any other optional data can also be included in the repetition.) This

approach is not ideal with a normal hash function, as the computation could fall into a

loop. But in Skein, every block has a different tweak and is thus processed differently."

There are important reasons for this cascade construction, in particular the aim is to

protect against failures in at least one of the algorithms for true long term security:

An adversary cannot parallelize the workload by computing both derived keys at the

same time because Derived Key B depends on the result of Derived Key A.

The entropy in the Master Key is not lowered if PBKDF-Keccak is weak because the

Password and Salt are also included in PBKDF-Skein.

The entropy in the Master Key is not lowered if PBKDF-Skein is weak because it is

XORed with Derived Key A.

The Master Key is at least as strong as the strongest function and retains the entropy

in the Password and Salt even if one of the functions is weak or compromised.

It is hard to perform cryptanalysis on the output of each function individually because

the output is XORed by random data from the other function.

The user can choose not store the number of Keccak or Skein iterations with the rest

of the database. The user would remember the iterations or write them down

separately on a piece of paper. This may be useful if passing through international

airport security and there is a high likelihood of the data being confiscated and copied.

This forces an attacker with only the database to try every iteration count for every

password permutation. To counter an attacker simply caching the results of previous

iteration counts and running the PBKDF on one password at a time, the number of

iterations are appended to the end of the Salt at runtime. This forces the attacker to

do the full PBKDF iterations for every reasonable iteration count the user could have

chosen e.g. 1 - 10,000+ then repeat that for all possible password permutations.

For added security an option exists in the user interface to use custom iteration counts.

The user can decrease the number of iterations for slower portable devices and use a

longer password to compensate. The user may also choose to increase the iteration

counts to make the database more resilient to attack. The default of 10,000 iterations for

each of the PBKDFs is a good balance between strength and slow speed of the JavaScript

runtime engine.

The total length of the Salt is the same length of all the database keys (256 bits AES-CTR

encryption key + 256 bits Salsa20 encryption key + 512 bits Keccak MAC key + 512 bits

Skein MAC key) which adds up to 1536 bits. Normally passwords do not contain much

entropy, so the Salt which was randomly generated by the TRNG is used as a backup to

add additional entropy to safely secure the database keys.

Another option exists in the user interface to store the 1536 bit Salt as a separate keyfile.

The advantage of this is to store the keyfile on a separate storage device (e.g. MicroSD

card) or written down on a piece of paper which can be easily hidden if the database is at

risk of being compromised in transit. If an attacker can confiscate or steal the primary

device (e.g. notebook PC) which has the encrypted database but cannot find the keyfile

as well then it is practically impossible to crack the database encryption in any

reasonable timeframe. Future versions may allow this keyfile to be hidden inside an

image file using steganography.

15.2 Sub key derivation

Four sub keys are derived from the master key and are used to encrypt the actual database

encryption and authentication keys. This is basically a simple KDF2 [156] construction but

uses a cascade of two hash functions for each counter value to protect against flaws in

either algorithm. The newer hash functions used are already secure against length

extension attacks [157] and do not need HMAC [197]. The following describes the cascade sub

key derivation:

Master Key ← The 512 bit master key derived from the cascade PBKDF used earlier

Counteri ← A 32 bit numeric counter to be combined with the hash function e.g. (

00000001 , 00000002 , ... in hexadecimal)

Derived Key1 ← Keccak-512(Master Key || Counter1) ⊕ Skein-512(Master Key || Counter1

)

Derived Key2 ← Keccak-512(Master Key || Counter2) ⊕ Skein-512(Master Key || Counter2

)

Derived Key3 ← Keccak-512(Master Key || Counter3) ⊕ Skein-512(Master Key || Counter3

)

Derived key4 ← Keccak-512(Master Key || Counter4) ⊕ Skein-512(Master Key || Counter4

)

A simple KDF2 construct to get encryption and authentication keys from a master key

would apply the hash function twice. Once with the Master Key and a unique Counter

(e.g. 01) to make an encryption key, and again with the Master Key and another unique

Counter (e.g. 02) to gain a unique MAC key. If the keys used for encryption is

compromised it is computationally hard to find a pre-image for the one-way hash

function to determine the Master Key or the derived MAC key. Similarly if the MAC key

is compromised it is hard to reverse the process to find the Master Key or encryption

key. This cascade construct performs two hashes for each derived key, once using Keccak

on the Master Key and unique Counter, then again with the Skein algorithm and

another unique Counter. Finally it XORs the resulting random hash digests together to

produce the derived key. This adds additional assurances that the derived key will not be

easily reversed if there is a flaw in either algorithm discovered in the future.

The resulting derived keys are 512 bits in length. The first and second derived keys are

used for AES-CTR and Salsa20. Because the key lengths for these encryption algorithms

are only 256 bits in length, these two derived keys are truncated to just the first 256 bits.

The third and fourth derived keys which are used for Keccak and Skein remain at 512

bits.

15.3 Encryption and authentication of database keys

The following describes the encryption and authentication of the actual database keys using

the derived keys from earlier:

Database Keys ← The actual AES-CTR, Salsa20, Keccak and Skein database keys,

concatenated together

Nonce1 ← A static 96 bit nonce for AES-CTR (000000000000000000000000 in

hexadecimal)

Nonce2 ← A static 64 bit nonce for Salsa20 (0000000000000000 in hexadecimal)

Counter1 ← A 32 bit counter for AES-CTR, starting at 0 and incrementing by 1 for each

block being encrypted

Counter2 ← A 64 bit counter for Salsa20, starting at 0 and incrementing by 1 for each block

being encrypted

Keystream1 ← AES-CTR(Derived Key1, Nonce1, Counter1)
Keystream2 ← Salsa20(Derived Key2, Nonce2, Counter2)
Encrypted Database Keys ← Keystream1 ⊕ Keystream2 ⊕ Database Keys

MAC1 ← Keccak-512(Derived Key3 || Encrypted Database Keys)

MAC2 ← Skein-512(Derived Key4 || Encrypted Database Keys)

Cascade MAC ← MAC1 ⊕ MAC2

After encryption and authentication, the encrypted database keys and the Cascade MAC

are stored in the database. To decrypt the database, a user will enter their password, load

the keyfile and set the number of iterations. It will perform the same steps above to

generate the derived Keccak and Skein keys, recreate the MAC against the stored

encrypted database keys, then match that against the stored MAC. Any incorrect match

may mean an incorrect password, keyfile or number of iterations used. Alternatively, if

the password, keyfile or number of iterations is correct it could indicate a more serious

matter such as database corruption or that someone has tampered with the database.

16 Using HTML5

Thomas Ptacek's article, Javascript Cryptography Considered Harmful [158] raises a valid

point about JavaScript code being delivered by the web server being insecure against

MITM attacks. The article in general however is now outhated and blanket statements

saying that all JavaScript cryptography is harmful is misleading and inaccurate. In reality,

there are sensible [159] and secure [160] solutions to the problems raised and all of his other

concerns have been reasoned and mitigated [161] as well.

In summary, most points they made are not applicable for this program due to the fact that

the source code is downloaded as a signed .tar.gz [162] archive file and users are expected to

verify the file's GnuPG [245] signature with the one from this website to ensure its

authenticity. From there the code should be run locally from the machine by going to the

directory and running index.html which will load the website and code into the browser.

This means all code is always running locally from the local hard drive and the web address

will be similar to file:///media/truecrypt1/jericho/client/index.html . All

the executable code is self contained and does not rely on any server delivered JavaScript at

all. It essentially becomes a regular client side application except it runs inside a browser to

make use of the browser's rendering and JavaScript runtime engines. This itself mitigates

the majority of the problems the Matasano Security article raised.

HTML5 has more advantages than disadvantages. It's easier and faster to develop with.

New APIs allow for cryptography [115], persistent database storage [163], messaging [164] and

file management [165]. Browsers are first in line for security updates and the best ones are

open source and trustworthy. People rely on browsers to have good security to do their

Internet banking and shopping online. The source code does not need to be compiled.

Users or security researchers can verify the source code being run live in the browser using

Chromium or Firefox built-in Web Development tools or with browser add-ons like

Firebug [166]. This allows them to verify the code is doing exactly what it should be. HTML5

is cross platform, one code base can literally run on Windows, Linux, Mac, phones and

tablets simply with the latest web browser. Newer projects such as Electron [246] or

PhoneGap [247] allow the packaging of HTML5 code into a native app for various platforms.

One of the goals of the project is to get a truly secure chat program functioning on an open

hardware platform and an open operating system like Firefox OS [167]. This is a true open

source OS for smartphones and tablets from a reputable organisation that believes that

individuals' security and privacy on the Internet is fundamental [168].

Currently this program has been tested to work in the latest versions of the open source

browsers Firefox [169] and Chromium [170]. Some of the other popular browsers have not

implemented the Web Crypto API yet. The layout is responsive and will work on desktops

and tablets. Some more work and testing is still required to get it working nicely on mobile.

In particular a method to load the one-time pads into the program using later versions of

Android. Using Firefox is recommended as they are open source and are not involved in the

PRISM surveillance program [171]. Unfortunately nobody can say for sure about that with

Google so the proprietary Google Chrome browser is not recommended. Firefox is still

preferred in comparison to Chromium as Google were recently caught out [172] trying to

backdoor it with a closed source binary which captured audio from the microphone. There's

nothing stopping them from trying similar acts of subversion in future unless users are

watching closely for these issues.

It is recommended to create a new browser profile [173] inside a TrueCrypt [53] volume to

protect the one-time pads when they are stored inside the browser storage. In a future

version of the program it will keep the one-time pad database encrypted locally at all times.

The main crypto library this program uses is CryptoJS [174]. There were some other libraries

that would be good to use but they either did not work in a HTML5 Web Worker [175] which

makes CPU intensive cryptographic functions take significantly longer and blocks [176] the

user interface thread, or their outputs couldn't be verified from the reference test vectors. It

is important to verify that the code can produce the same hash outputs as the test vectors

from the specification documents. This ensures the program is not using a faulty or

backdoored version of the algorithm that gives incorrect results.

17 REST API using JSON

The client browsers communicate to and from the server using JSON and the REST API

on the server. The server side code is currently written for the latest version of PHP 5.x

using best security practices for protection against SQL injection [179] and other attacks.

This will likely be rewritten in a different language in the next release e.g. NodeJS [179] to

have a common cryptographic library base across the client and server. This will allow

for a simple integration of the data encryption between the clients and server in order to

hide the metadata [180].

The server sends CORS [177] HTTP headers so that the client browsers can connect and

make a cross-origin request. This is needed because the program is run locally from the

file:/// location and not served by a webserver. If the JavaScript code was served

from a web server it could let an attacker perform a MITM attack and alter the code, this

could then make the user send unencrypted messages and they would not be any wiser.

For now the browsers use an AJAX [181] request to send/receive data to/from the server.

The reason for this is that the chat can be delayed like email (encrypted messages remain

on the server until they are received), or real-time if users are connected at the same

time. If a user is connected it will check for new messages from the server every 3

seconds which is fast enough to appear as real-time and does not stress the server too

much.

A summary of the request/response protocols are shown below:

17.1 Send message

This is the request the client makes when sending a message.

17.2 Send message server response

This is the response the server makes after it has received a request to send a message.

17.3 Receive messages request

This is the request each client makes every 3 seconds. This will get any new messages from

the server for the user making the request.

17.4 Receive messages response

This is the response the server will make after receiving a request from a client for

retrieving new messages.

17.5 Initiate self destruct request

This is the request a client makes if they want to wipe the all the other chat group user's

local one-time pad databases. It is very disruptive and designed for use only in an

emergency. This command is sent encrypted and authenticated via the secure message

channel. This is so only a valid user with the set of one-time pads can trigger an auto nuke.

An attacker with access to the server cannot change anything to trigger the chat group users

to delete their local databases in order to disrupt communications.

To trigger the request, the user will visit a separate screen in the user interface and click a

button. The client will automatically send a regular message with the string code

init auto nuke . This will be encrypted with one of the one-time pads, authenticated

with the MAC and sent to the server like a regular message. The initiating user's current

local database of one-time pads will then be wiped and their screen cleared.

17.6 Self destruct initiated response

If a chat group user is checking for new messages and an authentic message comes through

with the code init auto nuke , instead of continuing to receive and process new

messages, the user's client will show a notification that the self destruct has been initiated

by the user who initiated it, then the program will immediately wipe their local database of

any data and clear the screen of any sent or received messages.

After all users have had their local databases wiped, the server database of one-time pads

can be cleared by the server administrator. There is no real risk in leaving the encrypted

messages on the server for a longer period of time as every one-time pad encrypted

message has information-theoretic security and plausible deniability.

18 Message encoding

Each one-time pad is made up of 192 bytes which is 384 hexadecimal symbols or 1536

binary digits. See the table below for more information:

Each message is made up of three main parts, the pad identifier, the message parts and the

message authentication code. The one-time pad is used to encrypt the message parts and

the MAC tag.

This can be further broken down to the individual message parts. See below for the length

of each part:

At the moment the program only supports messages typed using the ASCII printable

character set [182]. This is all the characters that can be seen on a standard US keyboard.

In practicality this limits the languages that can be used to English and ones that use the

basic Latin alphabet [183] e.g. Dutch, German, French, Indonesian, Portuguese and

Spanish but without the diacritical marks [184]. This is for ease of development at the

moment and the program will support other languages with proper UTF-8 [185] encoding

and decoding in the future.

All messages that are sent/received are encoded to hexadecimal format first which is just

stored in a normal JavaScript string. This is to make transport using JSON easier rather

than trying to send UTF-8 encoded data over the wire. A hexadecimal symbol

(Nibble [188]) is 4 bits, and two hexadecimal symbols makes 8 bits (one Octet/Byte [189])

and can be represented as a single ASCII character.

The Pad identifier is the first 7 bytes (56 bits) from the one-time pad. This identifies to

the receiver which pad should be used to decrypt the message. This is used rather than

sending the sequence number of the one-time pad to remain in sync with the other users

as that could reveal to an attacker the number of messages sent so far.

The maximum message length has been set at 115 bytes (115 ASCII characters) for now.

This is slightly less than the size of a tweet [190] (140 characters) or an SMS [191] (160

characters). This is because generating enough random data takes a long time. Making a

message length longer than that, where the one-time pad may or may not be fully used is

wasteful. If users need more than 115 characters they can simply send a second message.

In future a new feature will be added to allow a message to be spread over multiple

one-time pads.

If a message is less than 115 bytes in length it is padded to the right (up to the maximum

115 bytes) with random bits generated from the Web Crypto API. This hides the actual

length of the message to frustrate any cryptanalysis. For example if no padding was

added and the message was simply "hi" then the ciphertext would be the same length

which could aid the attacker. Of course there are a few other words with only two letters

which allows for some uncertainty. However if the message is padded up to the full 115

bytes each time, then an attacker knows nothing about the true length of the message,

only that it is somewhere between 1 and 115 bytes long.

The Actual message length is the true message length without any padding. It is an

aid in the decryption process so it can remove the correct number of padding bytes from

the end of the message and reveal the original plaintext automatically. This field is

always 1 byte in length which is enough to represent the message length. For example, if

the message was 70 bytes long, then the number 70 is converted to binary and left

padded (if necessary) to be 8 bits long. 8 bits can have 28 (256) possible values which

represents the numbers from 0 to 255. One byte of information can store the actual

message length of 1 to 115 bytes easily. The actual message length is also encrypted with

one byte from the one-time pad so it is impossible for an attacker to know the actual

message length without the one-time pad. An attacker only knows that the length of a

message is between 1 and 115 bytes. When decrypting the message, the message length

value is checked to make sure it is in the correct range. This helps avoid denial of

service [207] (DOS) and/or buffer overflow attacks.

A UNIX timestamp is sent along with the message in the Message sent timestamp

field to signify when the message was sent from the sender's computer. This is converted

to binary and sent with the message packet. 5 bytes are reserved for this. It could easily

be 4 bytes (32 bits), but an extra byte was added to avoid the year 2038 problem [192].

This timestamp is also encrypted with 5 bytes of the one-time pad. This prevents an

attacker from interfering with the date or time of the message which could be critical in

some circumstances. It is also used for correctly reordering messages on the client side

when retrieving multiple messages from the server. This prevents an attacker reordering

messages from them gaining access to the server or by delaying server responses.

The final part of the encoding is the MAC tag. This MAC tag is sent along with each

message for authentication and integrity to ensure that the message has not been

tampered with. The MAC tag is also encrypted with part of the one-time pad so it is also

information-theoretically secure. The process is explained in depth further on.

19 Message encryption process

The program first receives the plaintext message from the user from the text box when

they click the Send message button.

Then it does a lookup on the user's local database of one-time pads and selects the first

available one-time pad allocated to that user for sending messages. The one-time pads

for sending/encrypting messages are evenly pre-allocated and grouped under each user

in the chat group e.g. alpha, bravo, charlie etc. This prevents one user from encrypting a

messsage using the same one-time pad as another user.

Once a one-time pad has been selected, it removes it from the local database and splits it

into the pad identifier, the message parts and the MAC parts. The encryption process is

as follows:

In step one, the plaintext with padding, the message length and the timestamp are

converted to binary and concatenated together.

In step two, because some of the bits of the 40 bit UNIX timestamp can be predictable,

this could leave a crib [140] for an attacker and they could recover those few bits of the

key. This however would not compromise the remainder of the plaintext because each

bit of the one-time pad is random and independent from the rest. For example, if the

timestamp was 1406440512 for 2014-07-27 at 5:55am in UTC then that would convert to

binary as 00000000 01010011 11010100 10010100 01000000 . If we compare

another time in the future, 1503040500 for 2017-08-18 at 7:15am in UTC then that

would convert to binary as 00000000 01011001 10010110 10010011 11110100 .

The first 12 bits are the same in both timestamps even though the dates are years apart.

This is because the timestamp field is larger than currently required in order to future

proof the protocol. If it was the usual 32 bits then eventually there would be incorrect

dates and times shown in the program after 19 Jan 2038 [192].

To remove this as a possibility for being a crib, the program randomly reverses the

binary message parts (including the plaintext with padding, the message length and the

timestamp) depending on the second last byte in the one-time pad. It does this by

converting this byte to an integer value (0 - 255), then uses that number modulo 2. This

will return a random integer of 0 or 1. A one will mean the message parts get reversed

while a zero will mean they stay the same. This means that every message, an attacker

does not know for certain whether the timestamp is at the front or end of the message

parts. They also do not know whether the true plaintext begins at the start of the

message or the end. Because all users have the same one-time pad, they can reverse this

transformation to get the message parts back in proper order after decryption. This

transformation has a similar purpose to Russian copulation [193].

In the third step, the XOR [48] operation is what does the encryption. Each bit of the

plaintext is encrypted with a unique bit of the one-time pad. With a truly random

one-time pad the encryption is unbreakable even in theory [194].

The final step concatenates the pad identifier to the ciphertext message parts. The pad

identifier helps the other users determine which one-time pad was used to encrypt the

message.

Once the message has been encrypted, the MAC is created using a random MAC

algorithm that was selected and then encrypted with part of the one-time pad. This

process is explained further on. The MAC is concatenated to the end of the ciphertext

and sent with the message to the server. The server holds the message until all the other

users have retrieved it.

20 Message decryption process

The user first checks for encrypted messages on the server that are not sent by them and

have not been read already by them. This will retrieve all other messages sent by users in

the same chat group. Once the encrypted messages have been retrieved by the user, the

messages are marked as read on the server by them. Once all users have read the message,

they are deleted from the server in a cleanup process which runs every 30 seconds. The

process for decryption is generally the same as encryption but in reverse order. For each

encrypted message that is received:

The program selects the sender of the message e.g. alpha, bravo, charlie etc and does a

lookup on the local database of one-time pads for that user. The program selects the pad

identifier (first 7 bytes) from the ciphertext which will match the first 7 bytes from one of

the one-time pads in the database. The pad identifier for each one-time pad is stored in a

separate field which makes searching faster. It then retrieves the one-time pad for the

message and takes off the pad identifier.

The MAC is then decrypted with the last 64 bytes of the one-time pad. Using the

ciphertext message parts, the one-time pad and the random algorithm for the MAC, the

MAC is calculated. If this matches the MAC sent, then the message is valid and has not

been tampered with. Decryption of the message will follow. If the message matches the

MAC sent with the message then an 'Authentic' status is displayed to the user. If the

message is not valid, the user is warned that tampering has occurred and the decryption

process will not be attempted.

The one-time pad message parts is then XORed with the ciphertext message parts

(including the plaintext with padding, message length and timestamp). This returns the

decrypted text with padding, the actual message length and the time the message was

actually sent.

Depending on the second last byte of the key, the decrypted message parts are returned

to their original order (unreversed) if that transformation was made in the encryption

process.

The message length part is read and this gets the length of the actual message in bytes.

Reading from the start of the plaintext message up to the message length will retrieve

the actual plaintext without padding.

The one-time pads for any messages received and verified authentic are then deleted

from the user's local database.

21 Message Authentication Code

The one-time pad is vulnerable to a bit-flipping attack [195] if not authenticated with a MAC.

Therefore the program calculates and sends a secure MAC with each message. Both users

have a shared secret, which is the one-time pad for each message so the MAC can be

calculated and verified by either person. This simple MAC construction is a temporary

solution which should be fine until there is time to write a more standardised one-time

MAC implementation based on the Carter-Wegman MAC [187].

The construction of this MAC is as follows:

Random Number ← Get the last byte of the one-time pad used to encrypt the message e.g.

7f and convert it to an integer i.e. 127 .

MAC Algorithms ← The list (array) of MAC functions available i.e.

[Skein-512, Keccak-512] . Both produce a 512 bit output.

Number of MAC Algorithms ← The number of MAC functions available i.e. 2.

Ciphertext ← The pad identifier (56 bits) and ciphertext message parts (968 bits)

concatenated together.

Key ← The full one-time pad (1536 bits).

MAC Encryption Key ← The last 512 bits of the full one-time pad reserved for encrypting

the MAC tag.

MAC Algorithm Index ← Random Number % Number of MAC Algorithms e.g.

127 % 2 = 1 .

MAC Algorithm ← MAC Algorithms [MAC Algorithm Index] e.g.

MAC Algorithms[1] = Keccak-512

MAC Tag ← MAC Algorithm(Key || Ciphertext)
Encrypted MAC Tag ← MAC Encryption Key ⊕ MAC Tag

For each message sent, a random MAC algorithm from a pool of algorithms is chosen to

authenticate the message. This provides some protection in the case that a fundamental

flaw is discovered in one of the hash algorithms in the future. It also makes message

forgery more difficult as an attacker now only has a 0.5 probability to guess the correct

hash algorithm that was used to authenticate each message. Currently there are only 2

hash algorithms that are used with the program due to the lack of current library

support. Currently the hash functions used are the 512 bit versions of Keccak and Skein.

These 512 bit MACs will provide 2256 collision resistance and 2512 pre-image resistance

against regular computers. They will provide 2 170 collision resistance [196] and 2256

pre-image resistance against quantum computers.

The program first gets a random index number from an array of available algorithms,

then it uses this algorithm to create the MAC. It selects the random array index by using

the last byte of the one-time pad. It converts this byte to an integer value (0 - 255), then

uses that number modulo the number of MAC algorithms available. Because there are

only two MAC algorithms at the moment, that will return an integer of 0 or 1 which

references the index of the algorithm in an array. For all possible bytes from 0 - 255 this

provides an even distribution of 0 - 1 outputs.

The process is to perform the encryption on the message parts first, then calculate the

MAC from the ciphertext and use the one-time pad as the key. This provides integrity of

the ciphertext and integrity of the plaintext. Also it does not provide any information on

the plaintext since no structure from the plaintext has been carried into the MAC. Skein

and Keccak are newer, more secure hash algorithms and do not need more complicated

constructions like HMAC to prevent length extension attacks unlike hash functions

based on the the Merkle–Damgård construction [198]. The MAC can be created simply by

prepending the message with the key and hashing it [199] [200], i.e. H(K || M).

Finally the MAC tag is encrypted with the last 64 bytes (512 bits) of the one-time pad.

This retains the information-theoretically secure [25] properties for the MAC tag as well

as the message. No attacker can know if they have successfully deciphered the

encryption by brute forcing combinations of the key to create a valid MAC tag. Nor can

an attacker know if they have created a successful forgery when they do not know the

correct key.

22 Failsafe CSPRNG

For some functions of the program, general random bits or random numbers are needed.

For these functions it is not critical to have true randomness so a strong CSPRNG [123] will

suffice:

Padding messages with random bits up to the maximum message length.

Generating random numbers in order to send decoy messages at random intervals.

Generating random 512 bit nonces for each server request.

Most browsers now support the HTML5 Web Crypto API getRandomValues() function [69]

which uses the operating system's cryptographically secure random source (e.g.

/dev/urandom on Linux). The Web Crypto API could however be compromised by

running a closed source operating system (e.g. Windows or MacOS) – in which case

Microsoft or Apple could have been paid off by the NSA [68] to make it use the Dual EC

DRBG [13] by default as far as anyone in the public knows. Or it could also be compromised

by a faulty browser implementation. Or it could also be compromised by the underlying

operating system's implementation such as it uses Intel's questionable on-chip RNG [67]

(RDRAND). No-one really has time to continually review the various browser

implementations of the Web Crypto API or the various operating system implementations

of their RNGs to make sure they are secure. So if the browser's implementation of this

CSPRNG is compromised then a failsafe RNG has been devised.

The program will use a 256 bit key, to create a keystream of random bits using the failsafe

CSPRNG Salsa20. This keystream is then XORed with the random bits returned from the

Web Crypto API. A unique 256 bit key is generated for each user by the TRNG and

exported with the user's one-time pads upon pad creation. When they load the one-time

pads, this key is also loaded into memory. The program will start the nonce at 0 , and

increment by 1 after every request for random bits. The nonce value is persisted in the

local database storage so a nonce is never re-used even if the program is restarted. The

nonce can be safely incremented to 253 - 1 (the maximum safe integer [201] in JavaScript)

without failure, but this is very unlikely to ever be reached under normal use.

23 Self destruct process

The protocol normally erases the one-time pad as soon as a message is sent. The one-time

pad is also removed from a receiver's database after they have successfully received and

authenticated a message. This is a more secure form of off the record chat similar to the

OTR messaging protocol [202]. OTR has good principles but lacks the perfect secrecy [25] and

plausible deniability [34] of the one-time pad.

One of the key features of the program is being able to trigger a duress code [204] which

instantly and automatically wipe the local database of one-time pads, the other users' local

databases of one-time pads and clear any messages remaining on screen.

This should be initiated in an emergency situation only. Potentially if a chat group user

believes their database of one-time pads may be compromised soon, or Three Letter

Agencies [203] are inbound on a helicopter assault [80] then they should initiate the self

destruct. This means that all the users are no longer in possession of the decryption keys so

it means they cannot be compelled to produce them under duress or in a court of law. No

encryption keys means no way to decrypt past messages. Without the real encryption keys,

a user under duress can easily think of any plausible plaintext message for any encrypted

message and an aggressor will not know the difference. A simple way to calculate this for a

one-time pad, given any ciphertext is to simply create a fake message, convert the

ciphertext and fake message to binary, then XOR them together which will produce a

plausible key to give to an attacker.

24 Extra security considerations

There are a number of potential attacks which are more around social engineering [205], side

channel attacks, retrieving the one-time pads by other means and attacks on the server.

There are ways to mitigate these issues as well.

Keyloggers, trojans or spyware on the PC could compromise the one-time pads or chat

messages. To mitigate this, the one-time pads should be generated on a clean install of

an open source Operating System and a clean browser install. Running different virtual

machines for different programs like Qubes OS [50] to isolate any potentially malicious

programs could be effective. A clean browser install means removing all the inbuilt

proprietary extensions like Java and Flash. When creating the one-time pads, the PC

should be physically unplugged from any network and any wireless/bluetooth adaptors

should be disabled. The pads should be saved to removable media such as MicroSD card,

SD card or USB drive. The Operating System should be secure wiped from the hard drive

after completion. Booting into a Linux Live CD [206] would be useful for this. For running

the chat program, ideally the OS should be open source e.g. Linux and the browser

software compiled from source code. Firewalls, antivirus and antispyware tools must be

installed and activated. Shared computers in a library or cafe should not be used.

An attacker could steal/copy the one-time pads as they are being delivered to the other

person. The encrypted one-time pad database should be kept on a small MicroSD card,

SD card or USB drive with the person at all times. Securing it in a zipped up pocket can

help prevent pickpockets. If plausible deniability is needed, the one-time pads should be

stored inside an encrypted hidden volume with Truecrypt or other software. If the

one-time pads have been misplaced they have not been in the user's possession for a

certain amount of time, they must be assumed to be compromised and fresh ones must

be created. Once loaded into each device, the encrypted text file containing the one-time

pads from the removable media should be erased. This leaves only one copy of the pads

which is being used by the software. The software will automatically remove one-time

pads as a message is received or sent.

The server could be attacked or communications interfered with. Encrypted messages

stay on the server for a short period of time until the other chat participants retrieve

them from the server which is similar to email. However the requests to the server are

frequent enough that if both users are connected at the same time then it behaves as

real-time chat. There is potential for a nation state attacker to block communications

and interfere with the transmission of encrypted messages. They will not be able to

decrypt any of the messages, nor will they be able to forge or alter a message without

detection due to the strong MAC. However they could block messages being received, or

hack into the server and delete messages from the server, or perform a DOS type attack

on communications. If an attacker like the NSA has already targeted the server there is

not much that can be done about it. The best option may be to set up a new server

somewhere else that they do not know about and inform chat participants of the new

server address. In the meantime the standard precautions for server installs should be

used e.g. setting up a firewall, blocking all ports except for port 80 which will be used by

the clients to connect to the server and port 22 for SSH [208] so the administer can still

log in to the server. Changing the SSH port to a non-standard port and using public key

authentication could also be a consideration.

Users will not be completely anonymous when communicating with the server.

Potentially a government may intercept the highly encrypted communications going

from their IP address to the server, and also from the server to the other user's IP. They

may be suspicious at being unable to decrypt the messages and try tracing the IP back to

its source so they can arrest the user for suspected terrorism. If everyone was using the

program it would be considered normal communications so they would be less likely to

target a particular individual. Users that are concerned about this could use a VPN or

SOCKS proxy [209] with their browser to tunnel their connections through a server in a

different country. For added protection they could always have chat conversations in a

public place, e.g. cafe, library, WiFi hotspot or buy a cheap pre-pay smartphone which

will allow them to tether the Internet connection to their laptop. If using a mobile phone,

it would be important to go somewhere different each time and then connect to the

cellular network. Also the GPS on the phone should be disabled so it is harder to

triangulate their position. For complete security the main battery should be physically

removed when done and a Faraday bag used to block any remote activation attempts

even while it is turned off [210]. The program does not currently work with the Tor

Browser Bundle [211] because they block access to the local disk, so that rules out HTML5

Local Storage use. However it is possible to configure the Tor application manually and

use that as a SOCKS5 proxy with a newer version of Firefox. It may even be possible to

configure Tails OS [212] to load a Firefox profile from a writable USB drive which could

store and update the one-time pad database.

Users could be forced to hand over their one-time pads with rubber-hose

cryptanalysis [213] or beaten with a wrench [214]. While quite unlikely it could be possible

in some countries. The software makes sure that after a message is sent, the one-time

pad is deleted from the device so it can never be re-used. Then when the other user

retrieves the message from the server, the encrypted message is deleted from the server.

In a group scenario, all users of the group must have read the message before it gets

deleted from the server. When a message has been decrypted on the other user's device,

it is deleted from their local database as well. This leaves no way to decrypt past

messages. It also gives the user plausible deniability that they can decrypt past messages

again or remember exactly what was said. To clear messages from the screen one simply

needs to refresh the page using the F5 key on their keyboard. To clear everything in an

emergency, the self destruct should be initiated. This option is available from the main

menu. It will delete the one-time pads from all devices connected to the server. If one of

the users is offline, as soon as they come online the will receive the self destruct

command and it will forcefully clear the database as well. If users are currently online it

will also clear sent messages on the screen of each device. This should be reserved for an

actual emergency because it is time consuming to recreate and deliver new one-time

pads.

25 References

1. Wikipedia - Global surveillance disclosures

https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013-present)

2. Wikipedia - National Security Agency

https://en.wikipedia.org/wiki/Nsa

3. The Guardian - Revealed: how US and UK spy agencies defeat Internet privacy and

security

http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

4. Wired - The NSA Is Building the Country's Biggest Spy Center

http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/

5. Wikipedia - Five Eyes - Future enlargement

https://en.wikipedia.org/wiki/Five_Eyes#Future_enlargement

6. Norddeutscher Rundfunk - Snowden-Interview: Transcript

https://www.ndr.de/nachrichten/netzwelt/snowden277_page-2.html

7. United Nations - Universal Declaration of Human Rights

http://www.un.org/en/documents/udhr/

8. Der Spiegel - Prying Eyes: Inside the NSA's War on Internet Security

http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-

security-a-1010361.html

9. Der Spiegel - Shopping for Spy Gear: Catalog Advertises NSA Toolbox

http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-

for-numerous-devices-a-940994.html

10. The Intercept - Exceptionally Compartmented Information

https://theintercept.com/2014/10/10/core-secrets/

11. Wikipedia - Enigma machine - Surviving machines

https://en.wikipedia.org/wiki/Enigma_machine#Breaking_Enigma

12. The Guardian - Edward Snowden: NSA whistleblower answers reader questions

http://www.theguardian.com/world/2013/jun/17/edward-snowden-nsa-files-

whistleblower

13. A Few Thoughts on Cryptographic Engineering - The Many Flaws of

Dual_EC_DRBG

http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html

14. SafeCurves - Choosing safe curves for elliptic-curve cryptography

http://safecurves.cr.yp.to

15. Wikipedia - National Institute of Standards and Technology - Controversy

https://en.wikipedia.org

/wiki/National_Institute_of_Standards_and_Technology#Controversy

16. Ars Technica - NSA employee will continue to co-chair influential crypto standards

group

http://arstechnica.com/security/2014/01/nsa-employee-will-continue-to-co-chair-

influential-crypto-standards-group/

17. A Few Thoughts on Cryptographic Engineering - Multiple encryption

http://blog.cryptographyengineering.com/2012/02/multiple-encryption.html

18. Der Spiegel - Prying Eyes: Inside the NSA's War on Internet Security - TUNDRA

http://www.spiegel.de/international/germany/bild-1010361-793640.html

19. Wikipedia - Daniel J. Bernstein

https://en.wikipedia.org/wiki/Daniel_J._Bernstein

20. Wikipedia - Bruce Schneier

https://en.wikipedia.org/wiki/Bruce_Schneier

21. Attacking and defending the McEliece cryptosystem - Daniel J. Bernstein, Tanja

Lange and Christiane Peters

http://cr.yp.to/codes/mceliece-20080807.pdf

22. Wikipedia - Hardware random number generator

https://en.wikipedia.org/wiki/Hardware_random_number_generator

23. Wikipedia - One-time pad

https://en.wikipedia.org/wiki/One-time_pad

24. Wikipedia - Message authentication code

https://en.wikipedia.org/wiki/Message_authentication_code

25. Wikipedia - Information-theoretic security

https://en.wikipedia.org/wiki/Information-theoretic_security

26. Wikipedia - One-time pad - Key distribution

https://en.wikipedia.org/wiki/One-time_pad#Key_distribution

27. Wikipedia - Passphrase

https://en.wikipedia.org/wiki/Passphrase

28. Wikipedia - Key derivation function

https://en.wikipedia.org/wiki/Key_derivation_function

29. Wikipedia - Stream cipher

https://en.wikipedia.org/wiki/Stream_cipher

30. Crypto Museum - Washington-Moscow Hotline - 1963: Teleprinter link

http://www.cryptomuseum.com/crypto/hotline/

31. Jericho Comms - Main website download page

https://joshua-m-david.github.io/jerichoencryption/

32. GitHub - Jericho Comms source code repository

https://github.com/joshua-m-david/jerichoencryption/

33. Free Software Foundation - GNU General Public License

https://www.gnu.org/licenses/gpl-3.0.en.html

34. Wikipedia - Plausible deniability

https://en.wikipedia.org/wiki/Plausible_deniability

35. Wikipedia - Shor's algorithm

https://en.wikipedia.org/wiki/Shor's_algorithm

36. Washington Post - NSA seeks to build quantum computer that could crack most

types of encryption

http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-

computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-

7195-11e3-8def-a33011492df2_story.html

37. Washington Post - The 'Black Budget' - How intelligence agencies spend $52 billion

http://www.washingtonpost.com/wp-srv/special/national/black-budget/project-

files/black-budget-doubletruck-web.pdf

38. National Security Agency - Cryptography Today

https://www.nsa.gov/ia/programs/suiteb_cryptography/

39. A Few Thoughts on Cryptographic Engineering - A riddle wrapped in a curve

http://blog.cryptographyengineering.com/2015/10/a-riddle-wrapped-in-curve.html

40. International Association for Cryptologic Research - Neal Koblitz and Alfred J.

Menezes - A Riddle Wrapped in an Enigma

http://eprint.iacr.org/2015/1018.pdf

41. Wikipedia - McEliece cryptosystem

https://en.wikipedia.org/wiki/McEliece_cryptosystem

42. Biometric Update - UAB researchers find that automated voice imitation can spoof

voice authentication systems

http://www.biometricupdate.com/201509/uab-researchers-find-that-automated-voice-

imitation-can-spoof-voice-authentication-systems

43. Schneier on Security - How the NSA Attacks Tor/Firefox Users With QUANTUM and

FOXACID

https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html

44. Wikipedia - Man-in-the-middle attack

https://en.wikipedia.org/wiki/Man-in-the-middle_attack

45. Moxie Marlinspike - SSL And The Future Of Authenticity

http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/

46. StackExchange - Information Security - Are self-signed certificates actually more

secure than CA signed certificates now?

http://security.stackexchange.com/questions/42409/are-self-signed-certificates-

actually-more-secure-than-ca-signed-certificates-no

47. Cossack Labs - Why you should avoid SSL for your next application

https://www.cossacklabs.com/avoid-ssl-for-your-next-app.html

48. Wikipedia - Exclusive or

https://en.wikipedia.org/wiki/Exclusive_disjunction

49. Wikipedia - Star network

https://en.wikipedia.org/wiki/Star_network

50. Qubes OS Project

https://www.qubes-os.org

51. Electronic Frontier Foundation - EFF v. NSA, ODNI - Vulnerabilities FOIA

https://www.eff.org/cases/eff-v-nsa-odni-vulnerabilities-foia

52. Wikipedia - Venona project - Decryption

http://en.wikipedia.org/wiki/VENONA_project#Decryption

53. Open Crypto Audit Project - Verified TrueCrypt v. 7.1 source and binary mirror

https://opencryptoaudit.org

54. Wikipedia - Secure channel

https://en.wikipedia.org/wiki/Secure_channel

55. Wikipedia - Air gap (networking)

https://en.wikipedia.org/wiki/Air_gap_(networking)

56. Wikipedia - Dead drop

http://en.wikipedia.org/wiki/Dead_drop

57. Wikipedia - Customs

https://en.wikipedia.org/wiki/Customs

58. Wikipedia - Modulo operator

https://en.wikipedia.org/wiki/Modulo_operation

59. Wikipedia - Steganography

https://en.wikipedia.org/wiki/Steganography

60. Wikipedia - Diplomatic bag

https://en.wikipedia.org/wiki/Diplomatic_bag

61. Wikipedia - Vienna Convention on Diplomatic Relations - Summary of provisions -

Article 27

https://en.wikipedia.org

/wiki/Vienna_Convention_on_Diplomatic_Relations#Summary_of_provisions

62. Wikipedia - One-time pad - Perfect secrecy

https://en.wikipedia.org/wiki/One-time_pad#Perfect_secrecy

63. Wikipedia - Tamper-evident technology

https://en.wikipedia.org/wiki/Tamper-evident_technology

64. Wikipedia - SIGSALY

https://en.wikipedia.org/wiki/SIGSALY

65. Wikipedia - Traffic analysis

https://en.wikipedia.org/wiki/Traffic_analysis

66. Veracrypt - Technical Details - Keyfiles

http://www.veracrypt.fr/en/docs/keyfiles-technical-details/

67. StackExchange - Cryptography - Could RDRAND (Intel) compromise entropy?

http://crypto.stackexchange.com/questions/10283/could-rdrand-intel-compromise-

entropy

68. ArsTechnica - Report: NSA paid RSA to make flawed crypto algorithm the default

http://arstechnica.com/security/2013/12/report-nsa-paid-rsa-to-make-flawed-crypto-

algorithm-the-default/

69. World Wide Web Consortium (W3C) - Web Cryptography API - 10.2.1. The

getRandomValues method

http://www.w3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues

70. Wikipedia - /dev/random

https://en.wikipedia.org/wiki//dev/random

71. Wikipedia - Shot noise

https://en.wikipedia.org/wiki/Shot_noise

72. Wikipedia - Least significant bit

https://en.wikipedia.org/wiki/Least_significant_bit

73. Wikipedia - Macro photography

https://en.wikipedia.org/wiki/Macro_photography

74. Wikipedia - Raw image format

https://en.wikipedia.org/wiki/Raw_image_format

75. Wikipedia - Portable Network Graphics

https://en.wikipedia.org/wiki/Portable_Network_Graphics

76. Wikipedia - BMP file format

https://en.wikipedia.org/wiki/BMP_file_format

77. Wikipedia - JPEG

https://en.wikipedia.org/wiki/JPEG

78. VeraCrypt / TrueCrypt - Portable Mode

https://veracrypt.codeplex.com/wikipage?title=Portable%20Mode

79. PortableApps.com - Mozilla Firefox, Portable Edition

http://portableapps.com/apps/internet/firefox_portable

80. YouTube - Kim Dotcom raid video revealed

https://www.youtube.com/watch?v=pMas0tWc0sg

81. Wikipedia - Tailored Access Operations

https://en.wikipedia.org/wiki/Tailored_Access_Operations

82. The Guardian - Ladar Levison: Secrets, lies and Snowden's email: why I was forced

to shut down Lavabit

http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-

shut-down-snowden-email

83. Wikipedia - Representational state transfer

https://en.wikipedia.org/wiki/Representational_state_transfer

84. Wikipedia - Application programming interface

https://en.wikipedia.org/wiki/Application_programming_interface

85. Wikipedia - JSON

https://en.wikipedia.org/wiki/JSON

86. Wikipedia - Apache HTTP Server

https://en.wikipedia.org/wiki/Apache_HTTP_Server

87. Wikipedia - MySQL

https://en.wikipedia.org/wiki/MySQL

88. Wikipedia - PHP

https://en.wikipedia.org/wiki/PHP

89. Wikipedia - Memory safety

https://en.wikipedia.org/wiki/Memory_safety

90. Wikipedia - LAMP (software bundle)

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

91. Ubuntu - Server - Overview

http://www.ubuntu.com/server

92. Jericho Comms - Server Installation Guide

https://joshua-m-david.github.io/jerichoencryption/installation-server.html

93. Wikipedia - Virtual private server

https://en.wikipedia.org/wiki/Virtual_private_server

94. Wikipedia - National security letter

https://en.wikipedia.org/wiki/National_security_letter

95. Moxie Marlinspike - SSL And The Future Of Authenticity

http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/

96. Youtube - DEFCON 19 - Moxie Marlinspike - SSL And The Future Of Authenticity

https://www.youtube.com/watch?v=pDmj_xe7EIQ

97. Wikipedia - Man-in-the-middle attack

http://en.wikipedia.org/wiki/Man-in-the-middle_attack

98. Wikipedia - Heartbleed

http://en.wikipedia.org/wiki/Heartbleed

99. ArsTechnica - Critical crypto bug leaves Linux, hundreds of apps open to

eavesdropping

http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-

of-apps-open-to-eavesdropping/

100. ArsTechnica - Extremely critical crypto flaw in iOS may also affect fully patched

Macs

http://arstechnica.com/security/2014/02/extremely-critical-crypto-flaw-in-ios-may-

also-affect-fully-patched-macs/

101. Wikipedia - Deniable authentication

https://en.wikipedia.org/wiki/Deniable_authentication

102. The Intercept - XKEYSCORE: NSA's Google for the World's Private

Communications

https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/

103. Der Spiegel - Inside TAO: Documents Reveal Top NSA Hacking Unit

http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-

to-spy-on-global-networks-a-940969-3.html

104. Wikipedia - NATO phonetic alphabet

https://en.wikipedia.org/wiki/NATO_phonetic_alphabet

105. Wikipedia - Unix time

https://en.wikipedia.org/wiki/Unix_time

106. Wikipedia - Cryptographic nonce

https://en.wikipedia.org/wiki/Cryptographic_nonce

107. Wikipedia - Assignment (computer science)

https://en.wikipedia.org/wiki/Assignment_(computer_science)

108. Wikipedia - Concatenation

https://en.wikipedia.org/wiki/Concatenation

109. Wikipedia - Skein (hash function)

https://en.wikipedia.org/wiki/Skein_(hash_function)

110. NCC Group - iSEC Partners - Blog - Double HMAC Verification

https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx

111. StackOverflow - Does it matter which equals operator (== vs ===) I use in

JavaScript comparisons?

http://stackoverflow.com/a/359509

112. Wikipedia - Base64

https://en.wikipedia.org/wiki/Base64

113. Wikipedia - Information leakage

https://en.wikipedia.org/wiki/Information_Leakage

114. Wikipedia - Chaffing and Winnowing

https://en.wikipedia.org/wiki/Chaffing_and_winnowing

115. W3C - Web Cryptography API

http://www.w3.org/TR/WebCryptoAPI/

116. Wikipedia Grover's algorithm

https://en.wikipedia.org/wiki/Grover%27s_algorithm

117. Jericho Comms - Server Installation Guide - Create and install a TLS certificate

https://joshua-m-david.github.io/jerichoencryption/installation-server-tls.html

118. Wikipedia - SHA-3

https://en.wikipedia.org/wiki/SHA-3

119. The Keccak sponge function family

http://keccak.noekeon.org/

120. Wikipedia - NIST hash function competition

https://en.wikipedia.org/wiki/NIST_hash_function_competition

121. Wikipedia - While loop

https://en.wikipedia.org/wiki/While_loop

122. Wikipedia - Pseudorandom number generator

http://en.wikipedia.org/wiki/Pseudo-random_number_generator

123. Wikipedia - Cryptographically secure pseudorandom number generator

https://en.wikipedia.org

/wiki/Cryptographically_secure_pseudorandom_number_generator

124. NIST - Federal Information Processing Standards (FIPS) Publication 140-2 -

Section 4.9.1 - Power-Up Tests - Page 57 - 58

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

125. Wikipedia - Bitmap

https://en.wikipedia.org/wiki/Bitmap

126. RANDOM.ORG - Statistical Analysis - Simple Visual Analysis

https://www.random.org/analysis/

127. Wikipedia - Canon PowerShot G - G7 to G12

https://en.wikipedia.org/wiki/Canon_PowerShot_G#G7_to_G12

128. Wikipedia - Raw image format

https://en.wikipedia.org/wiki/Raw_image_format

129. MIUI - The second operating system hiding in every mobile phone

http://en.miui.com/thread-10712-1-1.html

130. Wikipedia - Air gap (networking)

https://en.wikipedia.org/wiki/Air_gap_(networking)

131. Peter Gutmann - Secure Deletion of Data from Magnetic and Solid-State Memory

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

132. How To Geek - The HTG Guide to Hiding Your Data in a TrueCrypt Hidden Volume

http://www.howtogeek.com/109210/the-htg-guide-to-hiding-your-data-in-a-truecrypt-

hidden-volume

133. VeraCrypt - Documentation - Hidden Volume

https://veracrypt.codeplex.com/wikipage?title=Hidden%20Volume

134. Wikipedia - Advanced Encryption Standard

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

135. Wikipedia - Block cipher mode of operation - Counter (CTR)

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29

136. Wikipedia - Salsa20

https://en.wikipedia.org/wiki/Salsa20

137. Wikipedia - Advanced Encryption Standard process

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process

138. Wikipedia - eSTREAM - In ESTREAM portfolio

https://en.wikipedia.org/wiki/ESTREAM#In_ESTREAM_portfolio

139. Wikipedia - Cryptanalysis - Symmetric ciphers

https://en.wikipedia.org/wiki/Cryptanalysis#Symmetric_ciphers

140. Wikipedia - Known-plaintext attack

https://en.wikipedia.org/wiki/Known-plaintext_attack

141. Wikipedia - Chosen-plaintext attack

https://en.wikipedia.org/wiki/Chosen-plaintext_attack

142. Wikipedia - Authenticated encryption - Encrypt-then-MAC (EtM)

https://en.wikipedia.org/wiki/Authenticated_encryption#Encrypt-

then-MAC_.28EtM.29

143. Hugo Krawczyk - The Order of Encryption and Authentication for Protecting

Communications

https://www.iacr.org/archive/crypto2001/21390309.pdf

144. Wikipedia - SHA-3 - Instances

https://en.wikipedia.org/wiki/SHA-3#Instances

145. Wikipedia - Key Wrap

https://en.wikipedia.org/wiki/Key_Wrap

146. Wikipedia - PBKDF2

https://en.wikipedia.org/wiki/PBKDF2

147. StackExchange - Cryptography - How secure would HMAC-SHA3 be?

https://crypto.stackexchange.com/questions/15782/how-secure-would-hmac-sha3-

be/15825#15825

148. Wikipedia - SHA-2

https://en.wikipedia.org/wiki/SHA-2

149. Wikipedia - Data Encryption Standard - History of DES - NSA's involvement in the

design

https://en.wikipedia.org

/wiki/Data_Encryption_Standard#NSA.27s_involvement_in_the_design

150. Application-specific integrated circuit

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

151. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich - Argon2: the memory-hard

function for password hashing and other applications

https://password-hashing.net/argon2-specs.pdf

152. Password Hashing Competition

https://password-hashing.net/

153. Wikipedia - bcrypt

https://en.wikipedia.org/wiki/Bcrypt

154. Wikipedia - scrypt

https://en.wikipedia.org/wiki/Scrypt

155. The Skein Hash Function Family - Section 4.8 - Skein as a Password-Based Key

Derivation Function (PBKDF)

https://www.schneier.com/skein1.3.pdf

156. StackExchange - Cryptography - Security of KDF1 and KDF2 (hash based KDF's)

https://crypto.stackexchange.com/questions/15673/security-of-kdf1-and-kdf2-

hash-based-kdfs

157. Wikipedia - Length extension attack

https://en.wikipedia.org/wiki/Length_extension_attack

158. NCC Group - Thomas Ptacek - Javascript Cryptography Considered Harmful

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august

/javascript-cryptography-considered-harmful/

159. Meadhbh Hamrick - In Defense of JavaScript Cryptography

https://webcache.googleusercontent.com

/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-

of-javascript-cryptography.html

160. Nadim Kobeissi - Thoughts on Matasano Security's Critique of Javascript

Cryptography

https://archive.is/hLei0

161. Jericho Comms - Frequently Asked Questions - What about Matasano Security's

claims that JavaScript cryptography is insecure?

https://joshua-m-david.github.io/jerichoencryption/faq.html#matasano-article-

discussion

162. Wikipedia - tar (computing) - Uses - Software distribution

https://en.wikipedia.org/wiki/Tar_(computing)#Software_distribution

163. W3C - Web Storage

http://www.w3.org/TR/webstorage/

164. W3C - The WebSocket API

http://www.w3.org/TR/websockets/

165. W3C - File API

http://www.w3.org/TR/FileAPI/

166. Firebug - JavaScript Debugger and Profiler

https://getfirebug.com/javascript

167. Wikipedia - Firefox OS

https://en.wikipedia.org/wiki/Firefox_OS

168. Mozilla - The Mozilla Manifesto

https://www.mozilla.org/en-US/about/manifesto/

169. Mozilla - Download Firefox

https://www.mozilla.org/en-US/firefox/

170. The Chromium Projects - Chromium

https://www.chromium.org/Home

171. Wikipedia - PRISM (surveillance program)

https://en.wikipedia.org/wiki/PRISM_(surveillance_program)

172. Ars Technica - Not OK, Google: Chromium voice extension pulled after spying

concerns

http://arstechnica.com/security/2015/06/not-ok-google-chromium-voice-extension-

pulled-after-spying-concerns/

173. Mozilla - Firefox - Use the Profile Manager to create and remove Firefox profiles

https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-

profiles

174. Google Code - crypto-js library

https://code.google.com/p/crypto-js/

175. HTML5 Rocks - The Basics of Web Workers

http://www.html5rocks.com/en/tutorials/workers/basics/

176. Wikipedia - Blocking (computing)

https://en.wikipedia.org/wiki/Blocking_(computing)

177. Wikipedia - Cross-origin resource sharing

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

178. Wikipedia - Node.js

https://en.wikipedia.org/wiki/Node.js

179. Wikipedia - SQL injection

https://en.wikipedia.org/wiki/SQL_injection

180. Wikipedia - Metadata - Telecommunications

https://en.wikipedia.org/wiki/Metadata#Telecommunications

181. Wikipedia - Ajax (programming)

https://en.wikipedia.org/wiki/Ajax_(programming)

182. Wikipedia - ASCII - ASCII printable characters

https://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

183. Wikipedia - ISO basic Latin alphabet - Alphabets containing the same set of letters

https://en.wikipedia.org

/wiki/ISO_basic_Latin_alphabet#Alphabets_containing_the_same_set_of_letters

184. Wikipedia - Diacritic

https://en.wikipedia.org/wiki/Diacritic

185. Wikipedia - UTF-8

https://en.wikipedia.org/wiki/UTF-8

186. Wikipedia - Hexadecimal

https://en.wikipedia.org/wiki/Hexadecimal

187. Journal of Computer and System Sciences - Volume 18, Issue 2, Pages 143–154 -

J.Lawrence Carter, Mark N. Wegman - Universal classes of hash functions

https://www.sciencedirect.com/science/article/pii/0022000079900448

188. Wikipedia - Nibble

https://en.wikipedia.org/wiki/Nibble

189. Wikipedia - Octet (computing)

https://en.wikipedia.org/wiki/Octet_(computing)

190. Wikipedia - Twitter - Tweets

https://en.wikipedia.org/wiki/Twitter#Tweets

191. Wikipedia - Short Message Service

https://en.wikipedia.org/wiki/Short_Message_Service

192. Wikipedia - Year 2038 problem

https://en.wikipedia.org/wiki/Year_2038_problem

193. Wikipedia - Russian copulation

https://en.wikipedia.org/wiki/Russian_copulation

194. Dirk Rijmenants' Cipher Machines and Cryptology - One-time Pad - Definition of

One-time pad

http://users.telenet.be/d.rijmenants/en/onetimepad.htm

195. Wikipedia - Bit-flipping attack

https://en.wikipedia.org/wiki/Bit-flipping_attack

196. StackExchange - Cryptography - What security do Cryptographic Sponges offer

against generic quantum attacks?

https://crypto.stackexchange.com/questions/419/what-security-do-cryptographic-

sponges-offer-against-generic-quantum-attacks/10544#10544

197. Wikipedia - Hash-based message authentication code

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

198. Wikipedia - Merkle–Damgård construction

https://en.wikipedia.org/wiki/Merkle-Damgard_construction

199. StackExchange - Cryptography - Can Skein be used as a secure MAC in format H(k

|| m)?

https://crypto.stackexchange.com/questions/15813/can-skein-be-used-as-a-secure-

mac-in-format-hk-m/15815#15815

200. StackExchange - Cryptography - Is HMAC needed for a SHA-3 based MAC?

https://crypto.stackexchange.com/questions/17735/is-hmac-needed-for-a-sha-3-

based-mac

201. Mozilla Developer Network - Number.MAX_SAFE_INTEGER

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

/Number/MAX_SAFE_INTEGER

202. Wikipedia - Off-the-Record Messaging

https://en.wikipedia.org/wiki/Off-the-Record_Messaging

203. Wikipedia - Three-letter acronym - Examples

https://en.wikipedia.org/wiki/Three-letter_acronym#Examples

204. Wikipedia - Duress code - Military usage

https://en.wikipedia.org/wiki/Duress_code#Military_usage

205. Wikipedia - Social engineering (security)

https://en.wikipedia.org/wiki/Social_engineering_(computer_security)

206. Wikipedia - Live CD

https://en.wikipedia.org/wiki/Live_CD

207. Wikipedia - Denial-of-service attack

https://en.wikipedia.org/wiki/Denial-of-service_attack

208. Wikipedia - Secure Shell

https://en.wikipedia.org/wiki/Secure_Shell

209. Wikipedia - SOCKS

https://en.wikipedia.org/wiki/SOCKS

210. StackExchange - Security - Is it possible for a phone to be transmitting even while

turned off and the battery removed?

http://security.stackexchange.com/questions/65382/is-it-possible-for-a-phone-to-be-

transmitting-even-while-turned-off-and-the-batt/65455#65455

211. Tor Project - Anonymity Online

https://www.torproject.org

212. Tails - Privacy for anyone anywhere

https://tails.boum.org/

213. Wikipedia - Rubber-hose cryptanalysis

https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis

214. xkcd - Security

https://xkcd.com/538/

215. Jan Krhovjak, Petr Svenda, Vaclav Matyas - The Sources of Randomness in Mobile

Devices

https://www.fi.muni.cz/usr/matyas/RNG_nordsec07_cameraReady.pdf

216. Jan Bouda, Jan Krhovjak, Vashek Matyas, and Petr Svenda - Towards True Random

Number Generation in Mobile Environments

https://www.fi.muni.cz/~xsvenda/docs/RNGExtractor_NordSec09.pdf

217. Wikipedia - Bernoulli process - Basic Von Neumann extractor

https://en.wikipedia.org/wiki/Bernoulli_process#Basic_Von_Neumann_extractor

218. Boston University - Research - Quantum Code Master - Using the strange laws of

quantum mechanics to encrypt the world's most secret messages

http://www.bu.edu/research/articles/secure-quantum-key-distribution-encryption

219. Crypto StackExchange - Randomness test question from FIPS 140-1 and

comparison with 140-2

https://crypto.stackexchange.com/questions/15052/randomness-test-question-

from-fips-140-1-and-comparison-with-140-2

220. Wikipedia - Government Communications Headquarters

https://en.wikipedia.org/wiki/Government_Communications_Headquarters

221. Wikipedia - Tailored Access Operations

https://en.wikipedia.org/wiki/Tailored_Access_Operations

222. CAcert Research Lab - Random Number Generator Analysis

http://www.cacert.at/random/

223. University of Oulu - Psuedo Random Number Generators

https://ee.oulu.fi/research/ouspg/Frontier_Whitepaper-prng

224. GNOME - Shotwell

https://wiki.gnome.org/Apps/Shotwell

225. CAcert Research Lab - Random Number Generator Results - JC v1.5.2 - LSBs

http://www.cacert.at/cgi-bin/rngresults#14243

226. CAcert Research Lab - Random Number Generator Results - JC v1.5.2 - LSBs

XORed

http://www.cacert.at/cgi-bin/rngresults#3628

227. CAcert Research Lab - Random Number Generator Results - JC v1.5.2 - LSBs

XORed VNE

http://www.cacert.at/cgi-bin/rngresults#2458

228. Original test image 1 - Beach sand - 4032 x 3024 px - 292,626,432 bits (22.8 MB

compressed PNG)

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-first-image.png

229. Original test image 1 - Beach sand - Least significant bits - Black and white bitmap -

3491 x 3491 px - 12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-first-image-lsbs-bw-bitmap.png

230. Original test image 1 - Beach sand - Least significant bits - Colour bitmap - 712 x

712 px - 12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-first-image-lsbs-colour-bitmap.png

231. Original test image 1 - Beach sand - Least significant bits - FIPS 140-2 Test tesults -

12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-first-image-lsbs-test-results.txt

232. Original test image 2 - Beach sand - 4032 x 3024 px - 292,626,432 bits (22.8 MB

compressed PNG)

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-second-image.png

233. Original test image 2 - Beach sand - Least significant bits - Black and white bitmap -

3491 x 3491 px - 12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-second-image-lsbs-bw-bitmap.png

234. Original test image 2 - Beach sand - Least significant bits - Colour bitmap - 712 x

712 px - 12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-second-image-lsbs-colour-bitmap.png

235. Original test image 2 - Beach sand - Least significant bits - FIPS 140-2 Test tesults -

12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-second-image-lsbs-test-results.txt

236. Least significant bits of both images XORed together - Black and white bitmap -

3491 x 3491 px - 12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-both-images-xored-bw-bitmap.png

237. Least significant bits of both images XORed together - Colour bitmap - 712 x 712 px

- 12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-both-images-xored-colour-bitmap.png

238. Least significant bits of both images XORed together - FIPS 140-2 Test tesults -

12,192,768 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-both-images-xored-test-results

239. After Basic Von Neumann Extraction of the XORed least significant bits - Black and

white bitmap - 1746 x 1746 px - 3,049,484 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-both-images-xored-vne-bw-bitmap.png

240. After Basic Von Neumann Extraction of the XORed least significant bits - Colour

bitmap - 356 x 356 px - 3,049,484 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-both-images-xored-vne-colour-bitmap.png

241. After Basic Von Neumann Extraction of the XORed least significant bits - FIPS

140-2 Test tesults - 3,049,484 bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

sand-both-images-xored-vne-test-results.txt

242. NIST SP 800-22 - Test results - Least significant bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

nist-sp-800-22-final-analysis-report-lsbs.txt

243. NIST SP 800-22 - Test results - Least significant bits of both images XORed

together

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

nist-sp-800-22-final-analysis-report-lsbs-xored.txt

244. NIST SP 800-22 - Test results - After Basic Von Neumann Extraction of the XORed

least significant bits

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-

nist-sp-800-22-final-analysis-report-lsbs-xored-vne.txt

245. The GNU Privacy Guard

https://www.gnupg.org

246. Electron

http://electron.atom.io

247. PhoneGap

http://phonegap.com

248. National Institute of Standards and Technology - Special Publication 800-22 -

Revision 1a - A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

249. ENT - A Psuedorandom Number Sequence Test Program

http://www.fourmilab.ch/random/

250. Wikipedia - Diehard tests

https://en.wikipedia.org/wiki/Diehard_tests

251. New Zealand Herald - NZ Customs wants new powers to see passwords

http://nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11412237

252. Wikipedia - Randomness extractor

https://en.wikipedia.org/wiki/Randomness_extractor

253. HTML5 Rocks - Capturing Audio and Video in HTML5

http://www.html5rocks.com/en/tutorials/getusermedia/intro/

Copyright © 2013 - 2017 Joshua M. David

