Jericho Comms™

Version 2.1.0
7 January 2026

Joshua M. David
joshua [.] m [.] david [at] protonmail [.] com

1 Abstract

This document describes the design of an end-to-end encrypted, group text communications

program which provides information-theoretic security 25! for all messages that are sent and
received. The goal is to deliver a high assurance, encrypted communications program with

plausible deniability 34 for activists, human rights lawyers, journalists, whistleblowers and
citizens of the world that need high assurances that their communications are free of
censorship, control and eavesdropping from the world's governments and intelligence agencies.
To defeat the world's top intelligence agencies, citizens of every country need to raise their
communications security to a level where no-one can ever hope to break the encryption,
regardless of advances in computing power, cryptanalysis, mathematics or quantum physics.

To accomplish the program's design goals, the software uses an information-theoretic entropy
extractor to process the random data received from a physical thermal noise process, also

known as a True Random Number Generator [22] (TRNG). The random data is then used to
produce many single use encryption keys. Messages are encrypted using the One-Time Pad [23!

(OTP) cipher and a One-Time Message Authentication Code [%4] (One-Time MAC) for message
authenticity. To provide additional protection of the one-time pad database during the initial

key exchange [26] between users, a strong passphrase [271 and keyfile [%6] can be used. The
program will then use a cascade of Password Based Key Derivation Functions [28] (PBKDFs),

stream ciphers[29] and MACs to encrypt and authenticate the database. Other features of the
program include: zero meta data for network traffic between the clients and the server by way

of encryption and authentication, a decoy messaging system to frustrate traffic analysis [65] and
a self destruct mechanism which can wipe all the client databases in case of an emergency.

One-time pads are not frequently used outside of government and military networks because
they are somewhat inconvenient to use. This means they have generally only been reserved for
truly important communications such as the highest-level Allied communications in World War

111641 or the Washington-Moscow hotline [3%], They are still used by the US government where

heavily armoured trucks transport random numbers to the Pentagon [218], The main problems
are that the user needs to collect a lot of truly random data and the one-time pads must be
exchanged through a secure channel, e.g. delivered in person, before communication can take
place. These are not insurmountable problems and the design of this software solves the main
issues which make using one-time pads too impractical. The whole system is very simple to set
up and use, including generating truly random key material, exchanging the one-time pads
securely, key management and communicating securely. The program itself can be downloaded

from the project's website 311 and the full source code, which is available on GitHub [32], is
released under the General Public License, Version 3.0 [33],

Contents

1 Abstract
Introduction
Advantages
Formulas and notation
Overall network architecture
How it works

Server configuration

0 N O s W

Client - server zero meta-data encryption and authentication protocol
8.1 Design goals
8.2 Current limitations
8.3 Initial setup
8.4 Client API request
8.5 Server request validation
8.6 Server API response
9 Preventing information leakage and traffic analysis
10 Using TLS/HTTPS
11 User Chosen TRNG
12 Included TRNG entropy extractor
12.1 Selecting quality photographs
12.2 TRNG entropy extractor design
12.3 TRNG entropy extractor testing tools
12.4 TRNG entropy extractor analysis and test results
13 Pad storage and exporting data
14 One-time pad database encryption and authentication
14.1 Cascade database encryption
14.2 Cascade database authentication
14.3 Database index authentication
15 Protection of database encryption and authentication keys
15.1 Database master key derivation
15.2 Sub key derivation
15.3 Encryption and authentication of database keys
16 Using HTML5
17 REST API
17.1 Initiate self destruct request
17.2 Self destruct initiated response
18 Message encoding

19 Message encryption process

20 Message decryption process

21 Message authentication code (MAC)
22 Failsafe CSPRNG

23 Self destruct process

24 Extra security considerations

25 References

2 Introduction

In the wake of the global surveillance disclosures ! (Snowden revelations) it has become
apparent that the majority of our computer systems and communications are no longer secure.
The NSA 2l and its spy agency partners are actively collecting [3! and storing [the whole world's
communications as it transits their networks. Any data passing through the Five Eyes 5] and
partner countries (Australia, Belgium, Canada, Denmark, France, Germany, Italy, Japan, the
Netherlands, New Zealand, Norway, Singapore, Spain, South Korea, Sweden, United Kingdom
and United States) is intercepted, collected, decrypted and stored indefinitely. Internet traffic,
phone calls, email, chat messages and everything else are vulnerable to this international

surveillance network. Edward Snowden describes [¢] this network:

"The Five Eyes alliance is sort of an artifact of the post World War II era where the Anglophone
countries are the major powers banded together to sort of co-operate and share the costs of
intelligence gathering infrastructure... The result of this was over decades and decades some
sort of a supra-national intelligence organisation that doesn't answer to the laws of its own
countries.”

This spy network is a massive breach of international human rights and it is an attack on the
liberty, freedom and privacy of every person on the planet. It has huge implications for
democracy, freedom of the press, attorney-client privilege and freedom of speech. The Universal

Declaration of Human Rights 7! states clearly:
Article 3: Everyone has the right to life, liberty and security of person.

Article 12: No one shall be subjected to arbitrary interference with his privacy, family, home or
correspondence, nor to attacks upon his honour and reputation. Everyone has the right to the
protection of the law against such interference or attacks.

From the NSA leaks we know some of the NSA's capabilities for interception, collection,
malware, hacking 8] and interdiction [°l. However we know very little about the NSA's full
cryptanalytic capability from the NSA leaks. It is classed as Exceptionally Compartmented

Information (ECI) [19], which very few people have access to within the NSA. In other words, the
information is available only on a need to know basis. We can assume this is likely only their
top cryptanalysts and agency directors. This is similar to how the Enigma cipher was broken
but the knowledge of this was known only to a few and kept secret for decades afterwards [11],
Unfortunately Snowden did not have access to all their cryptanalytic capabilities so we do not
know what the NSA's true code breaking abilities are and which ciphers they can break. Edward

Snowden once stated [121;

"Encryption works. Properly implemented strong crypto systems are one of the few things that
you canrely on.”

However no-one can actually qualify that statement to say which encryption is actually strong
and which is not. Snowden never had access to the highly sensitive, compartmentalised
cryptanalysis information at the NSA in the first place. We are also unsure about which
standards that the NSA have compromised or weakened. We know that the Dual EC DRBG

standard 131 and the NIST curves 14 appear very suspect. However through their control and

manipulation of the NIST 151 and IETF [16] standards it is entirely possible that most public
domain cryptography has been subtly influenced, weakened or corrupted to some degree. To be
protected from the NSA, it makes sense to take a conservative approach and trust no single

algorithm on its own. This means at a minimum using cascading ciphers and algorithms 7 to

hedge against the NSA exploiting flaws in the algorithms that only they know about (18], In
addition to this it is important to use algorithms and best-practice knowledge from
independent, reputable cryptographers and security experts with no affiliation to the US
government. It is even better if these cryptographers are vocal with their criticisms about

surveillance and government overreach such as Daniel J. Bernstein %! or Bruce Schneier 291 so
people can be assured they are not likely to intentionally backdoor their algorithms.

The main problem with public key cryptosystems currently in common use is that they are
particularly vulnerable to quantum computers [35], We know that the NSA are close to building

one [36], They will not make a public announcement when they do get one and they may get one
well before they become publicly available, especially with their large budget of one billion USD

per annum for cryptanalysis and exploitation services [37). An announcement from the NSA [38]
in September 2015 has recommended a plan to transition to quantum resistant algorithms in
the very near future. Some argue that this is a hint that they consider RSA or Elliptic Curve

cryptography will be no longer safe to use [391140] jn the very near future. Even with quantum
safe public key algorithms there is no general consensus about which algorithms are actually
secure against quantum computers or what key sizes will be sufficient. A lot more public

cryptanalysis and research in the area of post quantum cryptography really needs to be done

before this becomes a viable option. A 2008 paper 21 proposed a large key size of 7,667,855 bits

for a hypothetical 256 bit security level when using the McEliece cryptosystem 1], Comparing
that security level to the design of this program and given an equal 7,667,855 bits of truly
random data, this program would split the data into separate one-time pads of 1536 bits each,
achieving perfect secrecy for 4992 chat messages at 115 bytes of plaintext per message. This is
essentially a years worth of communication with another person but the user gets proven
information-theoretic security instead of an unproven scheme.

Another problem with public key cryptography is that to do it securely, users need to meet and
verify public key fingerprints in person. Verifying by voice over the phone was once

recommended, but new research has shown [42] that given a few audio samples of someone's
voice, an attacker can use software that automates speech synthesis to create a close duplicate
of an individual's voice. The technology can then transform the attacker's voice to say any
message in the voice of the victim. With the NSA in a privileged position on the Internet
backbone, they could replace any public key fetched over the Internet with one of their

choosing using QUANTUMINSERT [43], For example, if a source calls a journalist to confirm the
fingerprint of the public key they downloaded, the NSA can use voice synthesis to confirm the
fingerprint of the NSA's public key instead. With the source now encrypting to the NSA's public

key, this would allow the NSA to transparently perform a Man in the Middle attack (44 (MITM)
on future communications between the source and the journalist.

Other methods of public key verification simply offload the trust responsibility to some other

mechanism, for example Certificate Authorities which have a multitude of problems [4511461[47]
and are not considered secure against nation state adversaries. If users need to meet physically
to manually compare fingerprints to achieve reasonable security, then it is no less difficult to
exchange a small memory card full of one-time pads instead which would allow
communication for years into the future with perfect secrecy. With one-time pads, there is no
fear, uncertainty or doubt about which algorithms are safe, which key sizes are sufficient and
which algorithms are truly safe from quantum computers. Users can focus on operational
security which is something they can realistically control, rather than relying on unproven
cryptographic algorithms and hoping that they are sufficiently secure against an adversary
such as the NSA.

With a focus on ease of use, understanding, configuring and using this program is much easier
for the average user than complicated systems like GnuPG [243], The only minor inconvenience is
the key exchange before use. Everything else which is complicated can be simplified and mostly
automated using well written software and a well designed user interface.

3 Advantages

Since the Snowden revelations starting in June 2013, there have been a number of secure
messaging solutions released. This software was one of the earliest counter-offensives to these
revelations with a fully functional prototype release in August 2013. This software has a
number of strong advantages compared to other secure messaging solutions whose designers
have not accounted for or understood the entire breadth and depth of the revelations. Most of
them aim for mass market, average grade security and do not adequately protect their users

against the full capabilities of the NSA[2], GCHQ [220] and TAO [221],
The advantages of this software are:

e Fully open source client and server software — anyone can freely contribute, distribute,
download, modify and use.

e Simple to understand and use — anyone can use including journalists and novice computer
users.

¢ Runs on fully open source environments — no need to trust a closed source operating
system.

e End-to-end encrypted — no service provider in the middle with ability to read user messages.

e Forward secrecy — compromise of a message or key does not compromise past or future
messages.

 Plausible deniability — users under duress can provide a key that decrypts to a plausible
message.

e Secure against quantum computers — secure against future advances in physics and
computing.

¢ Information-theoretically secure — messages remain secure even against unlimited
computing power.

o Automated decoy messages — hides the real number of messages being sent across the
network.

e Limited network metadata - hinders traffic fingerprinting, analysis and automated remote
exploits.

¢ Not wholly reliant on NIST - standards are combined with algorithms from trusted
community cryptographers.

o Full design whitepaper — design is verifiable and auditable for cryptographers and security
researchers.

e Critical code is unit tested - strong confidence that the cryptography and software works
correctly.

» Dependencies are vetted and tested — by avoiding use of package managers (NPM,
Composer etc), libraries and their automatic updates are not blindly trusted.

¢ Code is well written and commented - easily verifiable for security researchers and other
developers.

e Code is written to secure coding guidelines — coded defensively with knowledge of
common pitfalls.

e Code is written in memory safe languages - limited attack surface for buffer overflows
and exploits.

e Code is developed on an air-gapped system — prevents subtle infiltration of the code
repository.

¢ Code and releases are signed with GnuPG - users can trust in the code's authenticity and
integrity.

« Signing key fingerprint published on a blockchain - solid verification of the author's true
public key.

» Signed warrant canary with every release — alerts users if the author is under duress or
court order.

e Not developed in the United States — author cannot be threatened with National Security
Letters.

* Not government or defense agency funded - author has no questionable affiliations or
loyalties.

e Simple user guide and installation instructions - prevents user error and
misconfiguration issues.

4 Formulas and notation

The notation used in this document will use only limited mathematical and cryptographic
formulas and will tend towards explaining the design in plain English rather than
mathematical formulas so that the content is more accessible and understandable by a wider
audience.

® Bitwise Exclusive OR8] (XOR) operator. E.g.
00 =0

6bel=1
le0=1
lel=0
+ Regular addition. E.g.
2 +2 =4
X Regular multiplication. E.g.
5 x 5 = 25.
% The modulo 38! operation (mod). E.g.
5%2=1
9 %3 =0.

|| String concatenation [1%8] Inputs will be in the same type and format
before being concatenated together. E.g.
72fa270d || 9148a82c = 72fa270d9148a82c

— The variable assignment 1971 statement. E.g.
ce—a+b>b

=== The strict equality 111 operator. E.g.
if ($var === 37)
{

}

return true;

5 Overall network architecture

The following will outline the entire design of the application and how it works. Exact
implementation details can be found in the source code which is provided with every
download.

Diagram legend

1

. The first user generates the one-time pads (encryption keys) client side using the program's

True Random Number Generator (TRNG) and stores them encrypted on portable storage
media. The user then personally delivers the one-time pads to the other group users who are
likely in different geographical locations. After secure delivery to all group users, the
portable storage media should be securely erased or physically destroyed.

. Each user loads up the one-time pads into the program. Each user is allocated their own set

of one-time pads for sending. This prevents another user from reusing another user's one-
time pads. The portable storage media should then be erased.

. The program encrypts each message with a one-time pad. The message is also authenticated

with an information-theoretically secure MAC. The one-time pad is then automatically
deleted from the user's local database, then the encrypted message and MAC are sent to the
server.

. Arandomly generated Group ID of 64 bits and Group API Key of 512 bits exists on each client

and the server. All data sent between the client and server is additionally encrypted using
Skein-512 hash algorithm as a stream cipher similar to CTR mode and authenticated and
verified with a MAC also using the Skein-512 hash algorithm. This extra layer of encryption
between the clients and servers hides all meta data about the protocol because all the
requests and responses are sent looking like a random blob of data.

. A dedicated server or VPS, which is managed by one of the participating chat users, receives

the encrypted message and stores it for the other group users.

. The server web application provides an API which reveals no meta data. The server

database provides temporary storage for the one-time pad encrypted messages only. Once

file:///home/j/Documents/Jericho-current/otpchat/livesite/img/network-architecture-v2.0.0.png
file:///home/j/Documents/Jericho-current/otpchat/livesite/img/network-architecture-v2.0.0.png

the message has been received and read by all users on the clients it is automatically
removed from the server after a short interval.

7. The other user/s receive the encrypted message, determine which one-time pad was used to
encrypt it, then decrypt and verify the authenticity of the message locally.

8. The one-time pad is deleted from each receiving user's local database after they have read
the encrypted message.

Diagram notes

o The program uses a simple star network [4°! design. One particular point about this client-
server architecture is that the clients are the only devices which have the one-time pads
(encryption keys). The server effectively only contains end-to-end encrypted data. The clients
operate on a request, response basis. Because of this, the clients which have the sensitive
encryption keys should have their firewalls configured to block all incoming traffic by
default and only receive incoming data as responses to outgoing requests that they have
specifically made to the server. The responses from the server are always authenticated using
a shared Group API Key and any malformed or unauthentic responses are immediately
discarded. This makes the client machines a lot more resilient to attack and exfiltration of
encryption keys. Assuming the client machines are single purpose and are not used for
untrusted web browsing or other activities this is a very small attack surface. To use it on a

multi-purpose machine, the program could be run in a virtual machine e.g. CubesOS 59 to
limit the attack surface.

e The server should have a firewall as well which only allows incoming application data on
one port and optionally on an SSH port for management. The server application expects a
correctly authenticated packet from the client or it discards the request and responds with a
HTTP/1.1 200 OK header response. This header is on all requests successful or not and
random data is always in the body of the response whether successful or not. The attacker
will not know if the request was successful or not, however the client will know due to an
unauthentic MAC after decoding the response body. There is some small potential for a 0-day

vulnerability (51 in the server application layers e.g. in Apache or PHP, but compromising the
server will not compromise confidentiality or authenticity of messages as they are encrypted
end-to-end. If an attacker gained access to the server they could only interfere with the
server's operations to block messages from being sent or received at all. If that is the case, the
users can merely setup a new server quickly. In future, multiple servers will be able to be
used to provide high availability.

6 How it works

e The first user will run a TRNG. They can use their own or take high resolution photographs
and use the information-theoretic entropy extractor included with the software. This random
data is then divided into separate one-time pads. It is possible to generate enough data for a
few thousand messages in under a minute. A few thousand messages is enough for 6-12
months of communication at a reasonable frequency of messages sent per day.

» Each user will be assigned specific one-time pads for sending messages. This prevents re-use

of a pad by another user. Re-using a pad can make cryptanalysis possible [52] so it is very
important to prevent this. The messaging protocol is explained in depth further on.

e Once the one-time pads are generated, the program can export them for each user to
encrypted text files. These should be saved directly onto removable media such as floppy
disk, MicroSD card, SD card, USB thumbdrive, CD, DVD, Blu-Ray Disc or portable hard drive.
The program requires the one-time pad database to be encrypted and protected with a
password. This adds additional protection so users do not need to securely erase the pads or
physically destroy the storage media after the one-time pads have been transferred, unless
they have very high security requirements. If the users need plausible deniability that they
are even carrying one-time pads in the first place then there are some other precautions such

as creating a hidden TrueCrypt [53 volume on the storage media first before copying the pads
into it.

« To get the one-time pads to the other users, ideally they will arrange a physical meetup. This

is to create a secure channel 54 or air gap 55! to deliver the one-time pads which ensures the
encryption keys are not intercepted or compromised by transferring them over an insecure
network like the Internet. Key exchange is the user's responsibility and the best method is to
hide in plain sight. There are a few solutions that will usually work:

= Meeting the other user/s in person for a coffee, drink, lunch or dinner provides an
innocent cover for the exchange of encryption keys. If a user is going about their daily
activities this is the least suspicious option and the most likely to succeed.

= A dead drop 58], Arrange the time and place of the dead drop in person or using another
method, but do not arrange this over an insecure channel.

= During an epidemic or a pandemic such as COVID-19, it's still possible to exchange one-
time pads safely. For example, meet the other chat participants in person at a safe distance
e.g. 5+ meters in an outdoor area with plenty of ventilation. Use N95 (or better) respirator
masks to be extra safe. Put the memory storage device in a ziplock plastic bag and the
other participants will handle it with gloves until the pads are transferred off the memory
storage device to their local computer/devices.

In some countries, only the supermarkets, pharmacies and gas stations remained open. In
these cases, just meet at the supermarket or gas station around the same time and use the
dead drop method. You can even stick around to watch from a distance and make sure
they actually pick up the memory storage device off the bananas or canned beans,
depending on where you put it.

» If the country a user is residing in does not inspect internal mail, a sealed (tamperproof)
courier envelope can be hand signed and sent with reasonable assurance that it won't be
compromised. If the package appears to be opened on delivery, the encryption keys must
be considered compromised and not used. International mail is sometimes opened by

Customs [37] 5o it is not a reliable method. It would not be difficult to hide an encrypted
MicroSD within something else though.

= Usually it is not difficult to get a cellphone, laptop, portable hard drive, MicroSD card, or
SD card through Customs at national or international airports. Users can also hide them in
their carry-on luggage or on their person. If the government is allowed to scan personal
phones or computers as people are going through Customs then they may need to use

steganography 59 to hide the one-time pads within their vacation photos, videos or other
files. If Customs request a closer look at the contents of their devices by forcing them to

disclose their passwords or encryption keys 2511 then the user must keep an eye on exactly
what they are doing and that the device is visible at all times. If Customs take the device to

an area where it is no longer visible to the user, or they insert any other devices into the
laptop such as a USB drive, then they could have loaded malware onto it. These devices
must then be considered compromised and discarded.

» Governments and diplomats also have the option of using a diplomatic bag 6% to transfer
items to another country which have diplomatic immunity from search or seizure under

the Vienna Convention on Diplomatic Relations [61],

The one-time pads absolutely cannot be sent via a less secure channel such as the Internet
even if using the best public key, block or stream cipher encryption there is. This reduces the

security to be only as strong as the cipher used and the perfect secrecy (62! that the one-time
pad provides is lost.

Some people complain about having to deliver the one-time pads physically as if this is some
impossible, arduous task. This line of thought is entirely devoid of reality. There is no actual
difficulty in storing some data on a portable memory stick and visiting someone in person to
give it to them.

¢ As the one-time pads are in transit it is important to keep them secured on one's person at all
times. They should not be left anywhere unattended and kept in a zipped up pocket to

prevent pickpockets. Ideally they could have a tamper evident [63] seal as well.

e Once the one-time pads are safely delivered and the server is set up, each user will load them
into the program and begin chatting. There are extra security considerations listed further on
but it will be important to erase the text file containing the one-time pads from the
removable media once they are loaded into the program. Storing the one-time pads and
running the software from within an encrypted container on the removable media will help

mitigate most issues. VeraCrypt / TrueCrypt 78] and portable Firefox [7%] can be used for this.

7 Server configuration

The server basically functions as a temporary database store for the encrypted messages. One
user leaves encrypted messages on the server and the other users can retrieve them when they
are able. If both users are connected at the same time it is possible for real-time chat, plus or
minus a few seconds. The messages are removed immediately from the server after they are
read by all users.

The server is user owned and operated which means users are in complete control of the
communications. No-one else knows about the server so this keeps it off the radar of the
intelligence agencies, as opposed to having a central server somewhere that everyone on the
Internet is using. If everyone was using a single server it leaves it as a single point of failure and
the intelligence agencies can raid it[8%, hack it 1 or shut it down 82l with a court order. There is
no useful data for them on the server but they would be able to shut down a lot of user's of
communications at once, at least until someone set up a new server.

The server code provides a REST 831 based API[3 using JSON [85] which will run on the
Apache 861 2.4 x web server, PostgreSQL 871 12.x database and PHP [88] 7.2 x programming
language. PHP was chosen because it is a memory safe 89 language, fast to develop in and fast

to deploy along with a basic LAPP stack %0l In a future version, the design may be ported to
another server side language, database and web server that are considered more secure. The

straightforward REST API interface should enable the client to connect with multiple different
backend code bases and users can implement the one of their choosing.

At the moment, to get the server side running all that is needed is to download and verify the
server code, run a basic bash script which installs and configures everything that is required.

The script runs on Debian 11 but there is also an easy to use guide [92 with screenshots for users
wanting to use a different Linux distribution. Users can install a server their own network, or

pay for a cheap VPS 93] somewhere. It is not recommended to use a VPS in the US to rule out the

possibility of the provider being issued with a National Security Letter (NSL) [*4 which would
compromise security of the server.

8 Client - server zero meta-data encryption and authentication protocol

A symmetric key based encryption and authentication protocol is used to securely encrypt and
authenticate the requests and responses with the server API. This replaces TLS which secured
the server API credentials (username & password) in transit in versions up to 1.2. The reason
for this was mainly to simplify installation, avoid Certificate Authorities [4611471[951196] haye
resistance against active MITM attacks [*7! and quantum computers 3], also to hide any meta
data about the protocol as it transits public networks. There have also been major security
problems with common TLS implementations such as OpenSSL 98], GnuTLS [*°] and i0S [100]
which have led to a loss in confidence in these programs which have poor code quality and may
be hiding other NSA backdoors.

8.1 Design goals
« Authenticate all API requests to the server to verify they are from valid server users.

o Authenticate all API responses from the server to verify the response came from the
legitimate server, not an attacker.

« Disallow a user of one group to spoof another user's requests from another group to the
server.

e Avert passive MITM attacks where an attacker tries to snoop the API credentials in transit.

¢ Avert active MITM attacks where an attacker attempts to send fake requests to the server or
impersonate the server responses.

o Avert replay attacks and reject a request/response if the MAC does not match or if the data
was modified in transit.

e Prevent one request to the server being replayed with a different action being performed by
the attacker.

o Mitigate quantum computer attacks on the protocol.

« Separately encrypt all traffic between the client and server API to hide/obfuscate any meta
data about the data so any data sent/received looks entirely random, is of varying sizes, and
most importantly limits traffic fingerprinting and blocking methods. This is so the only
information going to and from the server appears to be random data and useless for a
network observer.

8.2 Current limitations

These limitations may change in future revisions of the program.

¢ The server administrator will control the server and ideally be a user of the chat groups
operating on that server as well. The server administrator will be a trustworthy person not
interested in interfering with his own chat group's communications. If a group of users want
to communicate with each other, but the server administrator is not included in that group,
then they should set up their own server. This rules out the server administrator having the
will to interfere with communications.

o Users of the server have an interest in keeping the group's shared API key on the server a
secret to protect their own communications so they will not give that key to anyone else.

e There is no need for each user in a group having a separate API key on the server to send/
receive requests because the server administrator could access that key anyway and
impersonate them or simply edit the database record to alter which user the message came
from.

e There is trust between the users in each group communicating not to impersonate other
users in the chat group. Because every user in a group has access to all the same one-time
pads and same API key, it would technically be possible to pretend to be one of the other
users in the chat group by tampering with the local data. This also doubles as a deniable

authentication [101] protocol because every message sent could have been engineered to come
from one of the other users in the chat group.

* The server protocol does not anonymise IP addresses from users connecting to the server. If
there is a requirement for anonymity, then users can tunnel their connection through a
SOCKSS5 proxy in their web browser or tunnel their connection through the Tor network.

¢ The protocol currently caters for 2 - 7 users per group. If additional chat groups are required
on the same server this can also be setup. The cap of seven users per group is an arbitrary
restriction and can easily be extended. With larger group sizes however, each user gets less
one-time pads allocated to them for sending messages. In future the protocol could allow
certain users who talk more often a greater allocation of one-time pads for sending, e.g. one
user broadcasting announcements to the other users.

e The program is currently designed so that the one-time pad data is designed to stay on one
device for each group user. If a user wished to communicate from their laptop and their
phone within the same group chat, it would be better to make another group user with a
different name e.g. Bob (Laptop) and Bob (Phone). Then each device gets their own one-time
pads for sending and there is no accidental re-use.

8.3 Initial setup

¢ Arandom 512 bit API Key in hexadecimal is created at time of one-time pad creation using
some of the truly random data and entered into the configuration file on the server. The user
can use SSH to access their VPS, but ideally to get the key securely onto the server, the server
could be hosted on their local network running a web server with a static public IP that is
serving to the wider Internet. Storing the key in the configuration file prevents SQL injection
attacks to retrieve the key and also it saves a database lookup each request.

¢ A random 64 bit Group Identifier (Group ID) in hexadecimal is created at group creation.
Groups are created when necessary on the server using the main setup Bash script.

e The API Key and Group ID (both as hexadecimal strings) are given to each user in person (not
using a key exchange protocol or sent via an insecure network). This will be done in the
initial key exchange between users as the program can store the API Key, Group ID and
server address along with the one-time pads.

¢ User creates an API request including a group of data variables to send to the server as part
of the Message Packet. For example, this can contain the one-time pad encrypted message
and its MAC that the server will store.

8.4 Client API request

First the program derives an encryption and MAC key from the Server Group Key. The method it
uses is similar to KDF1 and KDF2 where the master key is hashed with a counter e.g. Hash(Key
| | 32 bit counter).

Encryption Key = Skein-512(Server Group Key | | 00000000);
MAC Key = Skein-512(Server Group Key | | 00000001);

The following describes the parts of the network request:

e The Padding Length is a positive number 2 bytes in length indicating how many bytes of
random padding have been added to the network request to disguise the true length. This is
helpful for the server to remove the padding later and extract the other parts. This number is
then converted to hexadecimal for serialisation.

e The Padding is a random number of bytes for each network request (minimum length x and
maximum length y) gets added to the network request to disguise the true length and
disguise how many real messages were sent. These bytes are converted to hexadecimal for
serialisation.

o The Message Packets are each individual (one-time pad encrypted and authenticated)
Message Packet concatenated together. The number of Message Packets that can be sent at
one time depends on the program configuration. In version 2.1, up to 7 Message Packets can
be sent at a time, so it is possible to write longer plaintext messages and split the message
into multiple Message Packets then have it reconstructed at the receiving end. Multiple
Message Packets are supported in the protocol at the moment, as implemented. These
Message Packets are in hexadecimal format ready for serialisation.

In version 2.1, the client and server allows for longer messages to be sent by the clients.
Under the hood this allows the user to write a message up to 7 pads in length (739 bytes) now
(previously only 115 bytes for one message) and it splits the long message into separate
message parts and encrypts them separately. On the receiving end, a header embedded
within the plaintext of each sent message part indicates the root message and the order of the
subsequent message parts which helps recombine the original long message correctly. This
longer message can contain UTF-8 characters and splits messages and recombines them
safely.

The header bytes at the start of the plaintext for each subsequent message of a multi-part
message contains separators with | characters like so: | Root Pad Identifier | Message Count|.
This header takes up 11 bytes of space for each subsequent message part.

e A Current Timestamp is included to indicate when the request was sent. This is a UNIX
timestamp [195] therefore both the client and server code use UTC time. This is 5 bytes and in

hexadecimal format ready for serialisation.

e The From User data indicates which user the message is from. The server uses this to retrieve

the correct key. All users on the server are coded to NATO phonetic alphabet 194 names i.e.
Alpha, Bravo, Charlie, Delta, Echo, Foxtrot and Golf. This allows some anonymity when
multiple servers around the world are using the same protocol. When exporting the one-time
pads, the user can assign call signs/nicknames to the chat users within the group to override
the default names. These nicknames are not transmitted to the server because they are kept
in the user's local storage next to the one-time pads. For network transport, this is 1 byte in
lowercase, shortened to a for Alpha, b for Bravo etc.

« Each request is sent with an API Action to perform on the server. This prevents the attacker
from changing what action to perform on the server because any change to the data packet
will alter the MAC. This is 1 byte shortened to s for Send, r for Receive, or t for Test.

Then the program serialises the data to be encrypted in hexadecimal (and left pad it to the
correct fixed length if necessary):

Serialised Payload = Padding Length | | Padding | | Message Packets | | Current Timestamp | |
From User | | API Action

Next the program generates a keystream using the Skein-512 hash algorithm in a mode similar
to counter mode using an 8 byte counter i.e. Skein-512(Encryption Key | | Nonce | | Counter (i))
with the counter incrementing by 1 each loop e.g. 0000000000000000, 0000000000000001 etc
which produces 512 bits each iteration and this keeps getting appended together until the
keystream is longer than the Serialised Payload. This keystream is then truncated to the exact
length of the payload and XORed with the Serialised Payload i.e.

Keystream = Skein-512(Encryption Key | | Nonce || i) | | Skein-512(Encryption Key | | Nonce | |
i+1)]] ..
Encrypted Payload = Keystream & Serialised Payload

Next the data is serialised for authentication and a MAC is created:

e User creates a random 512 bit per request Nonce [1%], The server keeps track of sent nonces to

prevent replay attacks. The nonce is created using the Web Crypto API getRandomValues [69]
method.

e These variables are stringified into JSON and a MAC is calculated using version 1.3 of the
Skein [1091 512 bit (Skein-512) hash function on the JSON data:

MAC = Skein-512(MAC Key | | Group ID | | Nonce || Encrypted Payload)

¢ The data is then serialised and encoded to Base64 for transport:

Network Payload = Base64(Nonce | | Encrypted Payload | | MAC)

Even if the data is Base64 [110] decoded it still looks like completely random data. Also the length
varies with each request. Each request could look like it is carrying 0 messages (e.g. a receive
request) or sending many. As far as the network observer is concerned they cannot fingerprint
the traffic from the data alone. The data going back and forth will essentially just be a random
binary blob. This will help disguise meta data and make it much harder for spy agencies to
fingerprint the traffic as definitely originating from this program and prevent them targeting

the client machines or server with automated TAO hacking tools 193] or malware that has been

mentioned in the Snowden revelations. The main aim is to avoid XKeyScore [102] detection rules
make network traffic more difficult to analyse.

After this, a standard POST Fetch API request is made with the Network Payload in the body of
the request. The network headers are all standard ones for a POST request with CORS. If other
programs and services used a similar architecture design of just sending encrypted Base64 data
in the body of their requests (and responses) then no network observer could tell which service
or program was in use, nor what was being sent. Coupled with just using server IPs instead of
DNS, no network observer knows what service is what unless they hack the servers (or clients)
to find out more details, thus drastically increasing the work required and making mass
surveillance more difficult.

8.5 Server request validation

When the server receives a request, it first validates it in the following manner:

¢ The length of the request is checked to make sure it is within a valid range (and not extreme
so as to avoid Denial of Service type attacks.

o The Base64 Network Packet is decoded and validation is done to make sure it decoded
correctly.

e The decoded data of the Network Packet in hexadecimal is split into the Nonce, Encrypted
Payload and MAC.

o Next, the Group ID for this message is found by trying out all the Group Server Keys that are
on the server and trying to validate the MAC. For programming purposes, this Group Server
Keys is an array of key-value pairs (Group IDs to Group Server Keys). It is assumed there will
not be many chat groups on the server e.g. less than 10, so this is a fast operation. However
an advantage of doing this, is that many groups and users can be chatting on the server, but
to an outside observer they don't know which message is being sent to which group, there's
no correlation. They can see data going back and forth, but they don't know who is
communicating with who as all data is encrypted separately for the request and response.
There is no Group ID included in the Network Packet for them to know which group was sent
a message. The only way to know would be for them to be the server administrator and
query the database, or for them to hack the server (which is more work and hard).

for i in Server Group Keys:
Encryption Key = Skein-512(Server Group Key; | | 00000000);

MAC Key = Skein-512(Server Group Key; | | 00000001);
Computed MAC = Skein-512(MAC Key; | | Group ID; | | Nonce | | Encrypted Payload)
MAC validated? = constantCompare(MAC, Computed MAC))

If the MAC validates, the program will exit the loop early as it has found the corresponding
Group for the message and can proceed.

The server rejects invalid MACs, which will also mean any attempt to modify the data sent
will fail. The MAC validation method in the API is protected against timing side channel

attacks using a method very similar to Double HMAC Verification [110], This randomises the
byte order for each comparison so measuring timing differences for an attacker is practically

impossible. The differences in this program are that it uses the secure hash function
Skein-512 rather than HMAC-SHA-2 and some random data is introduced for each
comparison as an added security measure:

function constantCompare(Calculated MAC, Received MAC)

{
Random Data < Collect 512 bits from /dev/urandom
Hash A < Skein-512(API Key | | Random Data | | Calculated MAC)
Hash B < Skein-512(API Key | | Random Data | | Received MAC)
return (Hash A === Hash B)

}

If the MAC does not validate for any of the Server Group Keys, then an error will optionally
be returned to the client. To see this error message it will be included in the headers of the
network response e.g.

HTTP/1.1 200 Chat group not found, request MAC is invalid or request data
altered

. These error messages are only included for debugging purposes when setting up the client
(or server) and it is manually required to set testResponseHeaders to true in the
/var/www/html/config/config. json file on the server. Normally for such a validation
error, then only a HTTP/1.1 200 is sent back so there is no leakage about what is actually
running on the server, nor give clues to an attacker about what they did wrong for a
malformed/invalid request.

In such cases where the client has sent a valid request and it is validated, the server then
knows which group is communicating with it and can respond in an encrypted and
authenticated response with an error code embedded in the encrypted response. That error
code can then be displayed in the client for them to know what went wrong. E.g. it could be
something normal like there are no new messages to receive, or maybe something unlikely
like a database error.

 Next decryption can be done of the Encrypted Payload. After decryption, the Current
Timestamp in the plaintext payload is validated. From the current server time, the server will
accept a Current Timestamp 5 minutes in the past and a Current Timestamp 5 minutes in the
future. This gives an allowed window of acceptable clock drift between the clients and server.
Both clients and the server should be syncing with an NTP server for best results. The
automated server installation script uses NTPsec for this.

o Next the server will validate the received Nonce against nonces that have already been sent.
The Nonce is used to reject duplicate messages/replay attacks received within same
timestamp interval. Sent nonces are kept on the server in the database for 1 hour and then
discarded when the cron cleanup is run. A delay longer than this means a Network Packet
will not be accepted due to the time delay.

e The next step is validing the API Action and From User. If these validate, then the API Action
can be performed i.e. the storing of the sent message (for other group users to fetch later), or
the fetching of messages for that group that the current user has not received yet.

8.6 Server APIresponse

In a normal encrypted and authenticated response, the following is first serialised:

e Padding which is a variable number of random bytes between the min and max constants.
This disguises how many (if any) messages were sent back in a response.

o User Message Packets which is 0 bytes to a variable number of bytes. Each User Message
Packet is made up of:
From User which is just the first letter lowercase (1 byte)
One-time Pad Encrypted Message Packet which is 384 bytes encrypted on the client side

The User Message Packets is then serialised into hexadecimal format like the following:
User Message Packets = From User | | OTP Encrypted Message Packet, | | From User; | |

OTP Encrypted Message Packet; || ...

¢ Number of Messages which is 2 bytes in length, so the client parsing the response can know
how many messages to expect.

¢ Response Code which is 1 byte in length, so the client can know if the request was a success,
or failure. Some of the response codes are:

0 = This is the generic response success code. It could mean a message was sent successfully
or that messages were received successfully.

1 = This is the response code when it made a successful receive messages API request but
there were no messages to collect.

100 = The DB query failed.

101 = Could not find the test record in the database. Likely a configuration issue.

102 = Invalid or not implemented API action.

103 = No messages were sent in the 'send' request.

104 = The number of messages inserted in the DB did not match the number of messages
that were sent in the request.

e Then it is serialised as:
Serialised Response = Padding | | User Message Packets | | Number of Messages | | Response
Code

From parsing right to left, the client can first check the Response Code is a success, then with
the Number of Messages, it can remove the User Message Packets from the right and thus
throw away the Padding at the start.

Next the program generates a fresh 512 bit Nonce for the response, then a keystream using the
Skein-512 hash algorithm and the derived group Encryption Key much like in the request and
this keystream is then truncated to the exact length of the Serialised Response and XORed with it
ie.

Keystream = Skein-512(Encryption Key | | Nonce || i) | | Skein-512(Encryption Key | | Nonce | |
i+1)]|] ..
Encrypted Serialised Response = Keystream & Serialised Response

Next the response can be authenticated:

Response MAC = Skein-512(MAC Key | | Request MAC | | Nonce | | Encrypted Serialised Response
)

The Request MAC is used in this Response MAC digest calculation to tie this response to the

specific request. In this way some attacker that can delay and re-order network packets from
the server will be detected and the client will reject the response. In such a case this would
indicate a significant Denial of Service on the chat group, however future versions, groups will
be able to be set up on multiple servers in different locations for extra reliability.

Finally the response can be serialised and encoded to Base64 and sent back to the client:
Response Network Payload = Base64(Nonce | | Encrypted Serialised Response | | Response MAC)

On a successful request and response the client will process the data received from the server,
decrypt any received messages, escape the plaintext data for XSS attacks and render the
messages on the client side.

9 Preventing information leakage and traffic analysis

The program ends decoy messages at random intervals to other users in the chat group to
prevent information leakage 113 about when real messages are sent and to frustrate traffic

analysis [65], The technique used is similar in principle to the Chaffing and Winnowing [114]
cryptographic technique. On starting a chat session, each client will generate a random number

between 1000 and 90,000 using the browser's CSPRNG (691, A timer will be started and after this
number of milliseconds have elapsed the program will generate a random string of bytes up to
56 bits in length. Using the accuracy of milliseconds rather than seconds gives more
randomness for each timer interval. Otherwise every decoy message would be sent on evenly
rounded seconds and an attacker could determine that they were decoy messages.

The program will then check if these 56 bits exist as a pad identifier in their own set of one-time
pads. If that pad identifier already exists, which is quite rare, then it will skip sending a decoy
message for this interval, generate a new random number and try again after that many
milliseconds have elapsed. If the pad identifier does not already exist, then the program will
send a decoy message to the other users in the chat group. The other chat group users will
safely ignore the decoy message as the pad identifier does not exist in their copy of the one-time
pad database for the user that is sending the message. To send a decoy message the program

simply generates a further random 1480 bits using the browser's CSPRNG [691 and concatenates
that to the end of the 56 bit random pad identifier, thus forming a random string consisting of
1536 bits which is the same size as a regular one-time pad and message packet. This method
also avoids burning real one-time pads on decoy messages which would be wasteful.

The random message packet is sent to the server and left on there for the other chat group users
to collect. It effectively looks no different than a regular message being sent. The other chat
group users will download it, determine it is not a real message because the pad identifier does
not exist in the set of pads belonging to that user and discard it. The other users may not be
saying anything but each client that is connected to the server will be sending decoy messages
to other users in the group at random intervals. If two or more clients are left unnattended it
can look like an entire conversation is taking place without doing anything. This disguises when
real messages are actually sent by the users. An outside attacker that can monitor all network
traffic has no way of determining whether a message sent or received is a decoy or a real one.

If a client is online but there have been no real or decoy messages received from other chat
clients for 5 minutes then the decoy timer will stop. This is so it doesn't appear like one user is
just talking to themself. If another client comes online again and sends a real message or decoy
message then the first client will start up their timer again on a random interval to keep

sending decoy messages. This continues until a user quits the program or all other users are
offline for over 5 minutes. This is more than the maximum random timer interval (90 seconds)
so there is some overlap when users are coming online/offline. These intervals may be
customisable via the Ul in future versions or further optimised for network bandwidth usage.

An added bonus of this functionality is that if a user has come online and received a new decoy
message from another user they can know that the other user is most likely online (+/- 90
seconds) without any other kind of signalling protocol being needed. The program will also
show that the other user is online immediately if a real message is received within the last 5
minutes as well.

10 Using Transport Layer Security (TLS) / HTTPS

Because of the new server authentication protocol from version 1.3, using TLS is not mandatory
anymore. However it can be added as an optional layer of security to help mitigate monitoring
from lower level attackers, for example when using the program in a workplace, public WiFi
hotspot or home connection where an employer, casual hacker or ISP could monitor the

connection. TLS will not stop a nation state attacker [43] like the NSA as it is possible they have
obtained copies of the root keys for most Certificate Authorities anyway by using National
Security Letters [94], therefore they can perform an active MITM [44] attack as traffic is passing
through the Five Eyes ! alliance countries (USA, UK, Canada, Australia and NZ). It is also
possible they have quantum computers (3¢ by now. The public key exchange protocols used in
TLS are vulnerable to quantum computers, as are most of the common cipher suites which use
symmetric keys of only 128 bits. Key lengths of 256 bits are the minimum required 116! to
remain safe against quantum computers in the immediate future. Care must also be taken to

use a good cipher suite order to have forward secrecy and use the highest quality ciphers
available.

Users still wanting to use TLS and don't mind the extra effort to configure it are recommended
to generate a strong (4096+ bit RSA) self-signed certificate themselves using the guide on the
site (1171 install it on the server and deliver the fingerprints of the certificate to the chat group
users at the same time as the one-time pad key exchange which they can manually verify when
first connecting to the server.

11 User Chosen TRNG

The software allows a user to import truly random data directly from their own trusted entropy
source. This could be a Hardware Random Number Generator [221 (HRNG), physical entropy
source or even capturing the output from Linux/Unix's /dev/random [7% in the worst case. This
gives the user some flexibility and can allow for creating a lot more one-time pads than can be
created using the TRNG entropy extractor included with the program. Because the user can
freely choose to use their own entropy source for creating the one-time pads, this rules out any
possibility that the author of the program is interested in restricting the user to use a poor
quality random number generator which would expose the user to covert surveillance.

Users can change the file type of the file they are importing from pure binary, to a plain text file
containing hexadecimal [186] symbols or Base64 characters. Once uploaded, randomness tests

found in FIPS 140-2 124] will be run on the random data to ensure that the imported random
data is up to a minimum acceptable level. If the tests pass, the user can export the random data

and the program will split up the random data into separate one-time pads for use with the
program. Users do not have to rely on the FIPS 140-2 tests alone, they can of course run any
number of external randomness tests on their data to ensure it is of good quality before
importing it.

12 Included TRNG entropy extractor

The new design of the TRNG entropy extractor included in version 1.5.2 onwards improves on
the previous versions with new inspiration from two very good papers: The Sources of

Randomness in Mobile Devices [215] and Towards True Random Number Generation in Mobile
Environments [216],

This section describes the TRNG entropy extractor included with the program which gathers the
entropy contained in the shot noise [7! noise from a digital camera. The collected entropy is run
through a randomness extraction 252 process to ensure a uniformly distributed random data.

In the papers mentioned above, their testing was done against the optical sensor noise by
capturing frames from the view finder with the lense cap still on. Independent testing of their
results shows that this does give some entropy in the resulting data. Through more extensive
testing described further on it is shown that even better entropy can be obtained by taking high
resolution photographs of the natural environment.

To prevent interference or bias by software noise reduction and compression, a digital camera's
RAW mode 74l should be used. The RAW image file should then be converted as-shot (without
post-processing) to a lossless format like PNG [73 or BMP [76! for the program to process. This can

be done with Photoshop or using free software such as Shotwell photo manager [224], This
process best retains and preserves the optical sensor noise.

Saving in a lossy algorithm like JPEG 77l may have unintended side effects from performing
optimisations on the photograph. Users can however verify the random data from each step in
the process, export the data and check if it passes various statistical tests such as FIPS 140-2

Power-Up Tests (1241 NIST SP 800-22 [248] ENT [249] and Diehard [259],

Not all users will have a camera capable of taking photographs in RAW format, so the program
also includes a tool to capture camera frames directly from a webcam using the native HTML5

getUserMedia() 253! API. The user can then save the captured photographs as lossless PNG files
which can be loaded separately into the TRNG entropy extractor. If their webcam does not
produce large enough photographs and random data for a substantial number of one-time pads,
then there is another tool provided to help with this. The user can then load multiple sets of
random data produced by the TRNG entropy extractor and concatenate it together and convert
it into a single binary file. That binary file of random data can then be loaded into the program
and it will create the one-time pads from it.

12.1 Selecting quality photographs

Nature is random, unpredictable and always changing. For example, the sand on the seashore
changes every time the tide rolls in. Wave crests and currents change with the weather and
tides. Deciduous trees change depending on the season of the year. Trees and leaves move in the
wind. The sun strikes things in different angles and intensity throughout the day, casting
shadows in various directions. The variance of cloud cover and light conditions alters the

appearance of everything in different ways.

From a photographer's position they have a unique viewpoint of a scene in nature. They can
take a photo of anything in nature, giving an infinite number of possible photographs. They can

take photographs of things that are random in nature such as a macro [73! (extreme close-up)
shot of sand on a beach, grass, rocks or flowers. Or a regular photos of bushes, trees blowing in
the wind, wave crests in the ocean, or waves crashing against the sea shore.

Photographs should be taken of things in nature e.g. sand, rocks, flowers, bushes and trees. For
smaller items like sand, macro mode should be used. For best results, all photographs should be
in focus as much as possible and taken with good exposure. Care should be taken to avoid direct
sunlight or overexposure in certain areas of the photograph. Photographs should always be
erased after one-time pads have been created from them and not left on any storage device.

12.2 TRNG entropy extractor design

This full design is explained below:

1. The user selects two high resolution photographs of good quality. Ideally their photos should

be taken in RAW mode 74 from a standalone digital camera (if available), then converted as-
shot (without post-processing) to a lossless format such as PNG. There are a number of open
source tools available for the conversion.

2. The program then loads the photographs into memory as sequential arrays of pixels. The top
left pixel would be the first element in the array, followed by the rest of the pixels in that row
(left to right), followed by the pixels in the rows below and so on. Each pixel in the
photograph contains 24 bits of colour information, encoded as separate Red, Green, Blue and
Alpha (RGBA) integer values. The alpha channel data is not used and is discarded. For each
remaining colour channel (RGB) they have 8 bits of information, represented as a number
from 0 to 255. If each pixel contained its own array of values, all the data in the photograph
would be represented in a format similar to:

[[120,234,1231]1,[57,23,2541],[14, 255,01, ... 1.

For easier processing, this is converted to a sequential array format similar to:
[120, 234, 123, 57, 23, 254, 14, 255, 0, ...].

3. 1. For the first image, the first 3 colour channel values representing a single RGB pixel are
collected e.g. [120, 234, 123]. These values are then converted to binary format:
[01111000, 11101010, 01111011].

ii. In the paper [215] mentioned earlier, the minimum entropy estimate was approximately
1-3 bits per colour channel. This program takes a conservative approach using the lower
estimate of 1 bit of entropy per colour channel. The program then collects the least

significant bit (72! (rightmost bit) of each colour value:
[0,0,1].

iii. These 3 bits are then XORed together e.g. 0 ® 0 @ 1 which results in the single bit 1. This
bit is then stored by appending it to an output stream of bits obtained from this image.

iv. The previous 3 steps (i - iii) are then repeated for the remaining pixels in the first photo.
This produces a full output stream of bits from the pixels in the first image.

4. Step 3 is then repeated for the second image which produces a full output stream of bits

from the pixels in the second image.

5. The two output streams from the first and second images are then XORed together to create
a combined output stream. In testing, occasionally one photo might have small sections
where the output was not uniformly random. The bits from the second image help provide
protection against faults in the first image and vice versa. This can happen when there is a
small section that is overexposed to sunlight e.g. a reflection or a small gap through the
leaves of a tree. If the two photos were of different sizes then the output from this step will
be truncated to the same number of bits from the smallest photo.

6. The Basic Von Neumann Extractor [217! is then run on the combined output stream in step 5
which is the final random data. This simple theoretic extractor is used to ensure a uniformly
distributed output in the combined output stream. This is better than using a cryptographic
hash function for extraction e.g. SHA-3 as these are not known to be perfect or information-
theoretically secure.

7. The data from steps 3, 4, 5 and 6 are then run through randomness tests. Black and white
and also colour bitmaps of the output can be displayed to the user for visual analysis. If any
failures occur the user can delete the images and try again with a fresh set. The testing
process is described in the next section.

8. After successful processing and test analysis, the user should erase the original photographs
from the camera's memory card and the computer's hard disk. If full disk encryption is used,
only a regular deletion is needed.

9. The final random data is then split it into separate one-time pads of 1536 bits each.

It is important to note that this algorithm does not use this collected entropy to seed a PRNG,

DRBG 1221 or CSPRNG [123] to give an unlimited amount of random data. The aim is to avoid
stretching the available entropy over more bits. The program aims to be an information-
theoretic entropy extractor for a truly random physical process. Each uniformly random bit
must be used to encrypt only one bit of the plaintext otherwise the security proof of the one-
time pad is lost.

12.3 TRNG entropy extractor testing tools

An important part of an entropy extractor is the ability to test the output. A few methods have
been provided for this:

e The program allows the user to extract the random data from each step in the processing to
various formats i.e. binary file, ASCII binary text file, ASCII hexadecimal text file and ASCII
Base64 text file. Because the program only outputs data from two images at a time, there is
also another tool to combine the random data from multiple text files and output a single
binary file. This gives users the opportunity to verify the data with external randomness

testing programs e.g. NIST SP 800-22 [248] ENT [249] and Diehard [25%], That will allow them to
run additional tests and assure them of the quality of the random data before using it.

e For testing the random data within the program there are some simple statistical random

number generator tests included from FIPS 140-2 - Power-Up Tests [124], These include: The
Monobit Test, The Poker Test, The Runs Test and The Long Run Test. The goal is to add more
automated tests in the future to prove the quality of the program and improve on it in future
versions of the software. The FIPS 140-2 test suite is run on every 20,000 bits of the random
data at each step of the process. In testing, these tests proved very effective at ruling out bad

source photographs.

If any of the tests fail after this, then one or both of the original source photographs may not
be good enough and different ones might need to be used. Although the pass intervals for

these tests is quite strict and can sometimes give false positives[219] it is still a good indicator
to rule out very bad source photographs. The following example shows an example of the test
result summary:

Image 1: Name: Dry Grass.png Size: 21,957,602 Bytes Type: IMAGE/PNG
Image 2: Name: Rocks.png Size: 25,810,806 Bytes Type: IMAGEIPNG
Image 1 least significant bits: Image pixels: 12,000,000 Input entropy bits: 12,000,000 Entropy tests: [ZEaa)
Image 2 least significant bits: Image pixels: 12,000,000 Inputentropy bits: 12,000,000 Entropy tests: [
XORed least significant bits of both images: Entropy bits: 12,000,000 Entropy tests: [EEaad)
Final Totals: Extracted bits: 2,998,760 Extracted tests: [ZXgad) Estimated Number of OTP messages: 1,948

Completed processing, randomness tests and bitmap rendering. Click the view buttons above to see the results.

Looking at these results, the second image which was based on a JPEG image failed the tests
on the unconditioned least significant bits. This may not be a problem though as a closer look
at the tests might reveal it just failed one of the tests on a 20,000 bit segment by being slightly
outside of the accepted intervals. If a lot of the tests across multiple 20,000 bit segments were
failing then this would be a very clear warning that the photograph is not of good quality and
another should be used.

The aim is that if one photo does not produce very good random test results, then there is a
second photo as a failsafe. Looking at the results after XORing the least significant bits from
the two images together, the tests are shown as passing. The final Von Neumann extraction
step ensures that the data is uniformly random. Users should check that the final two steps
which XOR the least significant bits of both images together and the Von Neumann extraction
step succeed or the photos should be discarded. It does not matter so much if the
unconditioned least significant bits from either image fail slightly. These minor failures can
be recovered from with the final two steps. If the user finds two images that pass all the tests
at every step, then this is the best possible outcome.

The output from each step of the extraction process can also be viewed as a black and white
bitmap (1251 image or colour bitmap image which lets a user do a simple visual analysis of the

output. People are very good at spotting patterns 1261 and visualising the random data allows
them to use their eyes and brain for this purpose. If there is any structure in the image this
indicates a poor image source. It also gives a basic visual picture of the output.

To produce a black and white bitmap image, all the random data is converted to binary and
rendered as a bitmap. A black pixel with RGB values of [0, 0, 0] indicates a 1 bit and a white
pixel with RGB values [255, 255, 255] indicates a 0 bit. The height and width of the image is
determined by the square root of the number of bits that can be output. This produces a
square image and each pixel is rendered sequentially to fill the image row by row. The output
should look something like the image below at 100% zoom.

file:///home/j/Documents/Jericho-current/otpchat/livesite/img/trng-processed-images.png
file:///home/j/Documents/Jericho-current/otpchat/livesite/img/trng-processed-images.png

Good image Bad image
22 500 plxels (22,500 blts) 3 plxels (22 500 blts)

To produce a colour bitmap image, all the random data is converted to binary. For each 8 bits,
this is converted to a decimal value from 0 - 255. Then for every 3 decimal values this
represents the RGB values of a single pixel. The height and width of the image is determined
by the square root of the number of full pixels that can be output. This produces a square
image and each pixel is rendered sequentially to fill the image row by row. The output should
look something like the image below at 100% zoom.

Good image Bad image
22, 500 plxels (540 000 blts) 22,500 pixels (540,000 bits)

12.4 TRNG entropy extrator analysis and test results

For testing, a 12 MP Canon PowerShot G9[127] digital camera was used. This is a 2008 model,
high-end compact digital camera which allows taking photographs in RAW file format [128],
Photos were taken in manual mode using the RAW file format to avoid using the camera's
default lossy JPEG file format. The RAW files were loaded into the open source Shotwell photo
manager [224] program, then converted as-shot (without modification) to PNG. The original
camera images were 4032 x 3024 pixels.

FIPS test suite results

Tests were run by taking photographs of different patches of sand at a beach in macro mode.
These photos were then processed with the TRNG entropy extractor. The FIPS 140-2 tests were
run on all the outputs at each stage. An example of two photos of sand that were used in the
processing is presented below. The reference links contain the full size images and results.

Image 1 LSBs
Image 1 LSBs Image 1 LSBs Test

Image 1228 B&W [229] Colour [230] Results [231]

Pass

Image 2 LSBs
Image 2 LSBs Image 2 LSBs Test
B&W [233] Colour[234] Results [235]
Pass

Next the least significant bits of both images were XORed together. This step does not improve
the results too much both original images are of very good quality. However it can be a very
good improvement if one of the images is poor quality.

LSBs XORed Colour 2371 1.SBs XORed Test Results [238]

Pass

Next the resulting bits were run through the Basic Von Neumann Extractor. After this step the
data should be uniformly random.

VNE Colour [240] VNE Test Results [241]

Pass

NIST test suite results

Next, over 40 photographs of sand were tested. A few of the photographs that did not pass the
initial FIPS 140-2 tests for all steps were replaced. The ones that did pass the tests were
combined together into larger binary files of approximately 15 MB each.

The first test suite was NIST SP 800-22 [248], The tests were done on the least significant bits
(LSBs), the least significant bits of images XORed together (XORed LSBs) and the results after
Basic Von Neumann extraction (VNE). The results are presented below:

LSBs XORed LSBs VNE
Full results link [242] link [243] link [244]
Total bits tested 121927680 121927680 112787840
Total of 0 and 1 bits 60944569 — 60964217 - 56393688 —

60983111 60963463 56394152

Number of bits 38542 754 464
difference
Percentage of 0 and 1 0.499841 - 0.500158 0.500003 — 0.499996 0.499997 — 0.500002
bits

For testing the unconditioned least significant bits the full number of bits was divided into 8
bitstreams. Of these bits only a few of the bitstreams had failures. For most, 8/8 bitstreams
passed, however there were a few that had 7/8 bitstreams pass and a couple with 5/8 or 6/8
bitstreams that passed. For the results in the XORed least significant bits, this was tested as one
bitstream and mostly passed except for a few minor failures in the NonOverlappingTemplate
test. After the Basic Von Neumann extraction which was tested on one bitstream, the results
were the strongest.

ENT and Diehard test suite results

For the next tests. the binary files were uploaded to the CAcert Research Lab Random Number
Generator Analysis site [222], This site performed an independent test of the random data against

the ENT and Diehard test suites [223], It was important to test the data at each step of the
extraction process, including the unconditioned and conditioned data. The site required a
minimum of 12 MB of random data in order to process the files so enough photos were
processed to meet this requirement. The results are presented below:

LSBs XORed LSBs VNE

CAcert full results link [225] link [226] link [227]
Entropy (->8) 7.999989 7.999989 7.999989
Birthday Spacing 0.124069 0.785778 0.090422
Matrix Ranks 0.135 0.718 0.149
6x8 Matrix Ranks 0.039 0.073 0.456

Minimum Distance Test 0.535812 0.560551 0.894059
Random Spheres Test 0.008233 0.816425 0.646940
The Squeeze Test 0.069099 0.343447 0.375119
Overlapping Sums Test 0.431508 0.010005 0.707685

e LSBs - This was the result from Step 3 of the extraction process. This was the unconditioned
least significant bits of 10 images concatenated together into a 15 MB binary file.

¢ XORed LSBs — This was the result from Step 4 and 5 of the extraction process. This was the
least significant bits of 10 unique images concatenated together and then XORed with the
least significant bits of another 10 unique images concatenated together. These 20 images
produced a 15 MB binary file.

¢ VNE - This was the result from Step 6 of the extraction process. This was the least significant
bits of 20 unique images concatenated together and then XORed with the least significant bits
of another 20 unique images concatenated together. The resulting data was then run through
the Basic Von Neumann Extractor. These 40 images produced a 15 MB binary file.

There was a minor note on the Random Spheres Test after testing the unconditioned least
significant bits. This was detected as 'potentially deterministic', however the test did not fail
completely. All of the files passed all the other statistical tests without any problems.

Other photograph options

Tests were also run on various other things in nature. All the unconditioned least significant
bits from these photographs passed the FIPS 140-2 tests. These are the best options for
photographs as they are constantly changing. Examples of these are shown below:

Bark Berries Clouds

Taking photographs of static things also worked well and the unconditioned least significant
bits passed all the FIPS 140-2 tests. These are less optimal photograph sources however as they
are static, which means only the lighting conditions and direction of the photograph will vary in
subsequent photographs. Examples of these are shown below:

Carpet

Roughcast

Concrete

Stone Wood

Dark frame options

Results that did not work very well were dark frames where photographs were taken with the
lense covered to simulate a lense cap being on. The data was not strong enough to pass most of
the FIPS 140-2 tests. In testing there was some noise on the least significant bits and the pixels
were not completely black (0, 0, 0), but the resulting data was far from uniformly random. An
example is shown below:

Dark frame

In testing it required the least significant bits from four dark frame photographs to be XORed
together to be strong enough to pass the FIPS 140-2 tests. Comparing this to the regular
photographs tested above, they only required the least significant bits of a single photograph to
pass the tests so they should be preferred compared to dark frame photographs.

These results differ from the results in the two papers [21511216] mentioned earlier which
suggested using a dark frame to capture the thermal noise in the camera. This can likely be
attributed to the different methodology. It can be shown that letting in a small amount of light
into the frame and taking a photograph of a static cream painted wall was good enough to let
more noise onto the camera sensor and produce a strong result for a single frame that passed
the FIPS 140-2 tests. An example is shown below:

Painted wall

Testing was also done by taking photographs with a Logitech C920, which is a high end webcam
capable of recording video in high definition (1080P). A regular laptop webcam with 2MP was
also tested. In both cases, the test results were similar to the Canon G9 and the least significant
bits of all images passed the FIPS 140-2 tests.

Summary

In summary, the best results are achieved using the macro mode on a digital camera and taking
close-up shots of things like sand. Shooting a variety of things like rocks, trees or water can also
give good results. Users can experiment taking photos of various things in nature on their own.
Users should take care to verify the unconditioned random data passes the tests from FIPS
140-2. This will give reasonable confidence for using it as one-time pads..

With this entropy extractor and a single 12 MP photo, it is possible to produce enough random
data for approximately 1980 messages. For a group of two people this would be 990 messages
per person which is enough to last for a reasonable period of time. If more messages are
required then users can can generate multiple sets of one-time pads and load additional sets as
necessary when they run out. It is also possible to concatenate the random data from multiple
sets together using a tool included in the program. The only limit will be the amount of local
storage that can be used in the browser.

13 Pad storage and exporting data

After the one-time pads have been created, they must be exported separately for each user. Part
of this process automatically determines who will be sending with what one-time pads. The
one-time pads are divided up equally amongst the group members and allocated to each user
for sending. This prevents one user from accidentally sending with another user's allocated
one-time pads, causing a two-time pad situation and allowing for cryptanalysis. All users get
read access to the other group member's one-time pads, so when a message is received from
another user they can decrypt it.

Export to \ One-time pads (Text file)

Fill out all the details to make importing easier for other users:

~Server details

Server address (and optional port) ' http://123.45.67.B9/
Server group identifier (hexadecimal 64 bits) | 10f7021748b4e84d
Server group key (hexadecimal 512 bits) | .43c830957723edeeb06ae0e86c92dbc8901e

1. Create server group key 2. Test server connection

~Chat group details

\

Number of users in group Two users
Custom user nicknames Alpha | Alice

Bravo Bob

\

~Database encryption password

Passphrase | Edward J. Snowden is a hero, not a traitor

Passphrase (repeat) Edward J. Snowden is a hero, not a traitor
Display password Estimated strength: 264 bits

\

~Advanced options for international travel

Store the PBKDF salt as a separate keyfile
Enter the PBKDF iterations at decryption time

Number of PBKDF Keccak iterations | 10000 \
Number of PBKDF Skein iterations | 10000 |

3. Export one-time pads

« This screen contains all the details that will be saved to each export file for each chat group
user. The person creating the chat group should input the server address and API key here so
that when other users import the file they do not need to do any additional configuration. All
they need to do then is load the one-time pads into their browser and start chatting.

¢ A server API key can be generated from this screen. The program effectively takes 512 bits
from the start of the extracted random data and uses it as the key. This 512 bits is now no
longer available for use as a one-time pad. This API key is manually loaded up into the
server's config file by the user. After this the user can test the connection to the server to
make sure everything is set up correctly.

¢ The user can also define how many users will be in the chat group. They can customise the

user's name or nickname next to the call sign. The custom nickname is kept locally and
stored with the one-time pads. This way each chat group user has the same set of names and
knows who is in the conversation. The custom nickname is not sent over the network, only
the call sign (alpha, bravo etc) is sent as part of each network request so the server can send/
receive messages for that user. This means only the real users know who is talking to who. If
there are multiple people and chat groups around the world using the same protocol and
different servers, then it makes traffic analysis even more difficult.

There are 2 export options for using the one-time pads with the program. Export to
clipboard lets the user copy/paste the pads from memory into wherever they want to put
them. Export to text file pops up a save dialog to save the pads to a text file on their
filesystem or portable storage media.

Saving to removable media such as a floppy disk, CD, DVD, MicroSD, SD card or USB drive
will be convenient and portable. Flash memory is at least small and compact which means
the user can conceal, destroy or get rid of it quickly and easily. The most secure option would
be to use CD-Rs/DVD-Rs which can be written once, transferred to each user, then destroyed.

But the user needs to be careful to disable Autorun/Autoplay 254 to prevent any malware
inadvertently running automatically.

The most convenient option is to get a USB thumbdrive, with a portable version of Firefox [79]
loaded on it. Then save the one-time pads in there as well. Load up Firefox and then load the
one-time pads from inside it. Now the program is portable and the user can take it with them
on a keyring, run it from any trusted computer (e.g. home or work) and stay in contact
wherever they are. However it is a good idea to use a new (clean) USB thumbdrive to avoid

BadUSB [255] type attacks.

Hard drives and flash memory are difficult 31 to remove data from quickly and securely. It
is best if sensitive data like encryption keys do not get written to the disk in the first place.
The program allows for the one-time pad database to be encrypted and authenticated before
transport. This is detailed in full in the next section.

The password/passphrase used should have at least 256 bits of entropy for transport which is
estimated to be 41 ASCII characters. In version 2.0 the database will be encrypted all the time
so users may opt for a shorter password for faster access on their mobile devices. The
password strength estimator calculates a rough estimate of the password strength in bits as
the user is typing. Password characters are assumed to be drawn uniformly randomly among
the most commonly used characters on a standard US keyboard. This is calculated as
uppercase A-Z (26 characters) plus lowercase a-z (26 characters) plus numbers 0-9 (10
characters) for a total of 62 characters. This will produce a more conservative entropy
estimate than if special characters were included as well (i.e. the full 95 ASCII printable
characters). The formula will also take into account the Password Based Key Derivation

Function (PBKDF) [28] jterations which roughly increases the security in bits by log,(Iterations
) e.g. log,(10,000) which is approximately 13~ bits. The full formula for calculating the

entropy of the password in bits is as follows:

Entropy Bits — (Number of Password Characters x log,(62)) + log,(Number of PBKDF

Iterations).

14 One-time pad database encryption and authentication

The program can encrypt and authenticate the one-time pad database prior to export and
transportation to other chat group users. The program uses a cascade of two strong stream
ciphers for encryption and a cascade of two modern MAC algorithms for authentication. This
provides additional assurances such as:

e The database has not been tampered with in transit. An attacker cannot replace the one-time
pads with ones that they already know which would allow covert surveillance, set all the
one-time pads to zero bits which would nullify the encryption, subtly duplicate the one-time
pads in the database which would allow for two-time pad cryptanalysis, or swap pads
between users which would cause indecipherable messages for other users in the group.

+ The database is not easily readable if stolen or seized in transit. A computationally
unbounded adversary could in theory break the cascade encryption after many decades of
brute force attack with a quantum computer, but this is very unlikely. If a user knew that
their one-time pad database was stolen or seized (e.g. at an international airport) then they
would notify the other chat group users to stop using that set of one-time pads immediately
and switch to a different set. Then only the small number of messages which had been sent
since one-time pad generation until that point in time would be compromised. Because only a
small number of messages would have been sent during this time and the database is very
difficult to crack, then this reduces the likelihood an attacker would even try mounting a
brute force attack.

« After successful transportation of the one-time pads without interception or tampering, the
database can be quickly deleted and the rewritable transport media (e.g. MicroSD card, SD
card, USB drive) can be re-purposed for something else which would overwrite the database
eventually anyway. Because an attacker does not even have the encrypted one-time pad
database, it is not absolutely necessary to secure erase the media or destroy it (e.g. write once
CD, DVD media) unless absolute security is required.

In version 2.0 of the program, which is currently in development, the same encryption will be
used to secure the database as it resides on the client devices. Pads will be decrypted as they are
needed, used to encrypt a message, then deleted from the database. The program does not
currently provide any steganography for transporting the database, so if this is needed in the
near future it is advised to use a TrueCrypt 7.1a hidden volume (132111331 and store the one-time
pad database inside it. If an attacker forces the user to reveal the password they can reveal the
outer volume password which would reveal decoy files, and they would still have plausible
deniability that a hidden volume containing the one-time pads does not exist.

14.1 Cascade database encryption

To encrypt each one-time pad in the database a cascade of two strong, reputable stream ciphers
is used. The ciphers are the Advanced Encryption Standard (AES) (134! in Counter Mode [135]
(AES-CTR) and Salsa20 [136] with the full 20 rounds. AES, which is based on the Rijndael
algorithm by Vincent Rijmen and Joan Daemen, won the Advanced Encryption Standard
competition 137, A reduced 12 round variant of Salsa20 (Salsa20/12) by Daniel J. Bernstein was
selected for the eSTREAM software portfolio [138], The full 20 round variant of Salsa20 was
chosen for additional security. Two random 256 bit keys are generated using the TRNG's
random data at export time. One key is used for AES-CTR and the other for Salsa20. A different
nonce is used for each one-time pad to be encrypted in the database. The design Exclusive ORs
(XORs) the AES-CTR keystream and the Salsa20 keystream together then XORs the combined

keystream with the plaintext one-time pad.

The reason a cascade of two stream ciphers is used is because there may be secret cryptanalytic
techniques against a cipher such as AES when it's used to encrypt something on its own. A
recent publication of the Snowden documents revealed that NSA have their own in-house (non

public) cryptanalytic techniques against AES and other ciphers[!8], While a trivial reversal of a
strong cipher without any additional information is highly unlikely and would be indicative of
the algorithm being very weak, it may be more likely that a single encryption algorithm

becomes vulnerable [140] to NSA when they have access to known plaintext 1391 or chosen
plaintext 41l encrypted by the algorithm as well.

With a stream cipher cascade, the separate keystreams are XORed together. There is no way to
determine which bits belong to each cipher's keystream if each cipher is suitably strong on their
own. Even if there is a cryptanalytic break in AES, an attacker does not have access to the raw
keystream created by the AES algorithm because there is still plaintext and the Salsa20
keystream mixed in with it. Even if an attacker knows a lot of the plaintext they still won't be
able to decrypt the AES layer of encryption because the layer underneath is a random Salsa20
keystream which they do not know. Likewise if they tried to decrypt the Salsa20 encryption
layer first, the next layer is a random AES keystream so they would not even know when they
have decrypted the first layer correctly. The best remaining attack against a stream cipher
cascade may be a brute force of both keys which would take a very long time.

The following describes the encryption for the database:

Key; < A 256 bit random key for AES-CTR generated by the TRNG
Key, < A different 256 bit random key for Salsa20 generated by the TRNG
Nonce; — A unique 96 bit nonce for AES-CTR, changing for each database row (one-time pad) to

be encrypted
Nonce;, — A unique 64 bit nonce for Salsa20, changing for each database row (one-time pad) to

be encrypted
Counter, — A 32 bit counter for AES-CTR, starting at 0 for each database row and incrementing

by 1 for each block being encrypted
Counter; — A 64 bit counter for Salsa20, starting at 0 for each database row and incrementing

by 1 for each block being encrypted
One-Time Pad — The last 1480 bits of the one-time pad to be encrypted and stored in the
database. The public 56 pad identifier at the beginning is not encrypted.

Keystream; — AES-CTR(Key;, Nonce;, Countery)
Keystream, — Salsa20(Key,, Nonce,, Counter,)

Row Cascade Encryption — Keystream, & Keystream, & One-Time Pad
Row Cascade Decryption < Ciphertext One-Time Pad & Keystream, & Keystream;

e The reason to encrypt each row individually rather than encrypting the entire database at
once is for performance. Also in the upcoming version 2.0 of the program the database will
always be encrypted on disk, so it is advantageous to only have the small keys in memory
and decrypt each row as needed then delete the row.

e The keys remain the same for the entire database but the nonce changes for each database
row to be encrypted. The keys for encryption and authentication are obtained from slicing

the required number of bits off the beginning of the TRNG generated random data. This
ensures the keys are not used for anything else and the one-time pads are generated from the
remaining random data.

e Because AES in Counter Mode does not need a random IV, a unique nonce is used for
encrypting each row. Each one-time pad has an index number in the database starting from 0
up to the number of pads in the database. One user might have index numbers from 0 - 1000
in their set of one-time pads and the next user might have index numbers from 1001 to 2000
in their set. This ensures there is a unique index number for each row in the database. This
number is converted to hexadecimal and left padded with 0 bytes (00 in hexadecimal) up to
96 bits in length. The block counter for AES is 32 bits in length starting at 0 (00000000 in
hexadecimal) for each row and increments by 1 for each subsequent block being encrypted.

* The nonce for Salsa20 is 8 bytes, so the pad index number is is converted to hexadecimal and
left padded with 0 bytes (00 in hexadecimal) up to 64 bits in length. The block counter for
Salsa20 is also 8 bytes starting at 0 (0000000000000000 in hexadecimal) for each row and
increments by 1 for each subsequent block being encrypted.

¢ The first 56 bits of a one-time pad is the pad identifier which is public and used to lookup the
correct pad in the database when another user sends a message. The pad identifier is not
encrypted and removed prior to encryption so only the remaining 1480 bits of the random
pad are encrypted. This removes any remaining known plaintext for an attacker if they
attempt to decrypt one of the one-time pads.

e There is some pad database information which is stored in the client database as well
(program version, custom user preferences, server address, server Key, user callsign and list
of group user nicknames). This is JSON encoded to a string and encrypted with the same
database keys, but the static 96 bit nonce ffffffffffffffffffffffff in hexadecimal for
AES-CTR and the static 64 bit nonce ffffffffffffffff for Salsa20 is used for encryption.
Because each pad index number is converted to a nonce and in the language being used
integers cannot exceed 253-1(9,007,199,254,740,991), this nonce cannot be accidentally be re-
used for encrypting a pad, therefore it is used it to encrypt the pad database information.

14.2 Cascade database authentication

Using the safe principles of Encrypt then MAC [1421[143] the program creates a MAC of the
database row information including the encrypted one-time pad by using a cascade MAC. The

chosen hash functions for this are Keccak-512 [118] with the capacity set at 1024 (same as the

finalised SHA3 [144]) and Skein-512 [199], Each MAC digest is calculated independently by
computing Hash(Key | | Data) with independent keys for each algorithm. The resulting digests
are then XORed together to hide the individual MAC digests from independent cryptanalysis in
case one of the algorithms has a flaw. Keccak and Skein are newer hash functions that are not
vulnerable to length extension attacks with this simple MAC construct.

The following describes the authentication for each row in the database:

MAC Key; < A 512 bit random key for Keccak-512 generated by the TRNG
MAC Key, < A different 512 bit random key for Skein-512 generated by the TRNG
Nonce; — A unique 96 bit nonce based on the row index number which was used by AES-CTR to

encrypt the one-time pad
Nonce; — A unique 64 bit nonce based on the row index number which was used by Salsa20 to

encrypt the one-time pad

User Callsign < The user callsign as a string (e.g. alpha, bravo etc) which this one-time pad is
allocated to for sending

Pad Identifier — The first 56 bits of the one-time pad

Ciphertext One-Time Pad — The last 1480 bits of the one-time pad which is encrypted by AES-
CTR and Salsa20

MAC; < Keccak-512(MAC Key; | | Nonce; | | Nonce, | | User Callsign | | Pad Identifier | |

Ciphertext One-Time Pad)
MAC, < Skein-512(MAC Key, | | Nonce; | | Nonce, || User Callsign || Pad Identifier | |

Ciphertext One-Time Pad)

Row Cascade MAC — MAC; & MAC,

e The resulting MAC tag is stored along with the other information for each row. When the
database is being loaded on a client machine, the program will calculate the MAC again for
each database row and verify that the hash digest matches the stored MAC tag for the row. If
there is a match for each row then no tampering has occurred, otherwise a warning will be
shown to the user. If the warning is shown, then the user should abandon the database of
one-time pads and look to transfer a new set.

« In this version of the program, the database is verified only when loading the pads initially
after they have been exported and transported. Currently after the pads are verified and
decrypted, the database is saved to the client PC in an unencrypted state. Running the
application and browser profile from inside a TrueCrypt volume is still recommended for
this release to keep the one-time pads encrypted locally on the disk. In the future, version 2.0
of the program will have the one-time pad database be fully encrypted and authenticated at
all times. Each one-time pad row will need to be verified and decrypted before sending or
receiving a message. The reason for why this functionality is not available in this version is
that the application needs to be converted to a Single Page Application first. Currently each
web page is run separately and there is no in memory data sharing between pages.
Converting to a single page application will reduce code duplication and mean the master
password only needs to be entered once on startup, not once for each page opened.

¢ The pad database information which is stored in the client database (program version,
custom user preferences, server address, server key, user callsign and list of group user
nicknames) is also authenticated using the same cascade MAC. This is checked before
decrypting and importing the pad database information. In version 2.0 it will be verified each
program load to ensure database integrity.

14.3 Database index authentication

The program also creates a MAC of the database index for each user's set of one-time pads by
combining the pad index numbers for each row and then creating a cascade MAC. This ensures
that the all user's one-time pads in the database have not been added, swapped, reordered,
removed or otherwise tampered with.

The following describes the database index MAC:

MAC Key; < A 512 bit random key for Keccak-512 generated by the TRNG
MAC Key, < A different 512 bit random key for Skein-512 generated by the TRNG

User Callsign < The user callsign (e.g. 'alpha’, 'bravo’, ‘'charlie’ etc) of the set of pads being
authenticated
Pad Index Number — The index number of the row in the database for the user's set of pads

MAC; < Keccak-512(MAC Key, | | User Callsign | | Pad Index Number, | | Pad Index Number,
| | Pad Index Number, || ...)

MAC, < Skein-512(MAC Key; | | User Callsign | | Pad Index Number | | Pad Index Number; | |
Pad Index Number || ...)

Index Cascade MAC — MAC; ® MAC,

 When a message is received or sent that pad is deleted from the database so the pad index
MAC needs to be updated every time a new message is received or sent. This functionality
will be added in version 2.0 when the database will be encrypted and authenticated at all
times. At the moment in this version, the full verification of the index is only performed as
part of the initial importing of the one-time pads after transportation. This is mainly to verify
that the transfer took place without tampering. Version 2.0 will be much more
comprehensive and ensure that the database integrity and authenticity is valid at all times.

¢ Including the user callsign in the MAC means that an attacker cannot swap out one-time pads
from one user into another user's set of pads, forcing a two-time pad situation and allowing
cryptanalysis.

15 Protection of database encryption and authentication keys

The actual database encryption and authentication keys which were generated by the TRNG are
stored in inside the database with the rest of the other information. To protect these keys while
they reside in unprotected storage a simple key wrapping 145! construction is used.

15.1 Database master key derivation

To encrypt the actual database encryption and authentication keys, a master key is created by
deriving it from a password, two salts and two separate Password Based Key Derivation

Functions (PBKDFs) 28], The current PBKDFs are a temporary measure until there is library
support for Argon2 1511 which was the winner in the Password Hashing Competition [152], A
good fallback solution would have been to use berypt 153 or scrypt (1541 which use a lot of

memory as well but there is no verifiable library support for these functions in the
programming language being used.

The following describes the cascade PBKDF construction:

PBKDF-Keccak — A PBKDF based on the Keccak hash function with a 512 bit output
PBKDF-Skein < A different PBKDF based on the Skein hash function with a 512 bit output
Password < A strong password/passphrase entered by the user

Salt — A 1536 bit random salt generated by the TRNG

Keccak Iterations — The number of iterations to be performed by the Keccak PBKDF with the
default set at 10,000

Skein Iterations — The number of iterations to be performed by the Skein PBKDF with the
default set at 10,000

Keccak Salt — Salt | | Keccak iterations

Skein Salt — Salt | | Skein iterations

Derived Key A — PBKDF-Keccak(Password, Keccak Salt)

Derived Key B — PBKDF-Skein(Password | | Derived Key A, Skein Salt)
Master Key — Derived Key A & Derived Key B

e The first PBKDF is PBKDF2 [146] with the Keccak-512 hash function. The output key size is set
at 512 bits. A 1536 bit random salt which was generated by the TRNG is used. The default
number of iterations is set at 10,000 which takes about 8 seconds to compute on a single core
of an Intel Core i5 running at 3.3 GHz.

« Note that Keccak can be used in conjunction with HMAC 147 which is what PBKDF2 uses

internally. The reason to use Keccak instead of SHA-2 [148] or SHA-1 is because it is a newer
hash function and it is not designed by the NSA. Anything designed by the NSA is avoided by
this program in case it has deliberate secret weaknesses that are unknown to the academic
community. An algorithm designer is in the best position to design an algorithm with a subtle
weakness. In the case of SHA-2 a weakness may not be discovered for many years if
academia is well behind the state of the art in cryptography. For SHA-1 it barely lasted a few
years before needing to be phased out due to significant flaws. We know at one point the NSA

were 20 years ahead in cryptography 1491 when they knew about differential cryptanalysis
before anyone else. They are likely still ahead by a large margin. Using Keccak which was the
winner in an open competition and which has a design which is completely open is
considered much safer. In comparison to SHA-2, Keccak should provide better entropy in the
derived key, however it may be a lot faster in hardware which would provide a slightly better
advantage for an attacker performing a brute force attack. However the main attacker to be

considered is the NSA and we can reasonably assume they have dedicated ASICs 139 and
other hardware for cracking password hashes which were derived using the most commonly
used PBKDFs simply because everyone in the world is using those algorithms. By using the
newer Keccak algorithm this essentially forces the NSA to expend more money building new
dedicated ASICs or re-engineer their supercomputer code just to crack an encrypted database
created by this program. Even then they would still need physical access to the encrypted
database so they might not even bother trying.

e The second PBKDF uses the Skein hash function. The output key size is set at 512 bits. The
same 1536 bit random salt which was generated by the TRNG is used. The default number of
iterations is set at 10,000 which takes about 5 seconds to compute on a single core of an Intel
Core i5 running at 3.3 GHz.

¢ The Skein PBKDF method is described in Section 4.8 of The Skein Hash Function Family
specification document. Quoting the document:
"The application stores a random seed S, asks the user for a password P, and then performs a
long computation to combine S and P." ... "An even simpler PBKDF is to simply create a very long
repetition of Sand P; e.g,S || P || S || P || S..., and hash that using Skein. (Any other optional
data can also be included in the repetition.) This approach is not ideal with a normal hash
function, as the computation could fall into a loop. But in Skein, every block has a different
tweak and is thus processed differently."”

o There are important reasons for this cascade construction, in particular the aim is to protect
against failures in at least one of the algorithms for true long term security:

= An adversary cannot parallelize the workload by computing both derived keys at the same
time because Derived Key B depends on the result of Derived Key A.

» The entropy in the Master Key is not lowered if PBKDF-Keccak is weak because the
Password and Salt are also included in PBKDF-Skein.

» The entropy in the Master Key is not lowered if PBKDF-Skein is weak because it is XORed
with Derived Key A.

= The Master Key is at least as strong as the strongest function and retains the entropy in the
Password and Salt even if one of the functions is weak or compromised.

= Itis hard to perform cryptanalysis on the output of each function individually because the
output is XORed by random data from the other function.

» The user can choose not store the number of Keccak or Skein iterations with the rest of the
database. The user would remember the iterations or write them down separately on a
piece of paper. This may be useful if passing through international airport security and
there is a high likelihood of the data being confiscated and copied. This forces an attacker
with only the database to try every iteration count for every password permutation. To
counter an attacker simply caching the results of previous iteration counts and running
the PBKDF on one password at a time, the number of iterations are appended to the end of
the Salt at runtime. This forces the attacker to do the full PBKDF iterations for every
reasonable iteration count the user could have chosen e.g. 1 - 10,000+ then repeat that for
all possible password permutations.

« For added security an option exists in the user interface to use custom iteration counts. The
user can decrease the number of iterations for slower portable devices and use a longer
password to compensate. The user may also choose to increase the iteration counts to make
the database more resilient to attack. The default of 10,000 iterations for each of the PBKDFs
is a good balance between strength and slow speed of the JavaScript runtime engine.

o The total length of the Salt is the same length of all the database keys (256 bits AES-CTR
encryption key + 256 bits Salsa20 encryption key + 512 bits Keccak MAC key + 512 bits Skein
MAC key) which adds up to 1536 bits. Normally passwords do not contain much entropy, so
the Salt which was randomly generated by the TRNG is used as a backup to add additional
entropy to safely secure the database keys.

e Another option exists in the user interface to store the 1536 bit Salt as a separate keyfile. The
advantage of this is to store the keyfile on a separate storage device (e.g. MicroSD card) or
written down on a piece of paper which can be easily hidden if the database is at risk of
being compromised in transit. If an attacker can confiscate or steal the primary device (e.g.
notebook PC) which has the encrypted database but cannot find the keyfile as well then it is
practically impossible to crack the database encryption in any reasonable timeframe. Future
versions may allow this keyfile to be hidden inside an image file using steganography.

15.2 Sub key derivation

Four sub keys are derived from the master key and are used to encrypt the actual database

encryption and authentication keys. This is basically a simple KDF2 [156] construction but uses a
cascade of two hash functions for each counter value to protect against flaws in either
algorithm. The newer hash functions used are already secure against length extension

attacks 1571 and do not need HMAC [197], The following describes the cascade sub key derivation:

Master Key — The 512 bit master key derived from the cascade PBKDF used earlier
Counter; — A 32 bit numeric counter to be combined with the hash function e.g. (00000001,

00000002, ... in hexadecimal)

Derived Key, — Keccak-512(Master Key | | Counter,) & Skein-512(Master Key | | Counter)
Derived Key, — Keccak-512(Master Key | | Counter,) & Skein-512(Master Key | | Counter,)
Derived Key; — Keccak-512(Master Key | | Counters) & Skein-512(Master Key | | Counters)
Derived key, — Keccak-512(Master Key | | Counter,) & Skein-512(Master Key | | Countery,)

+ A simple KDF2 construct to get encryption and authentication keys from a master key would
apply the hash function twice. Once with the Master Key and a unique Counter (e.g. 01) to
make an encryption key, and again with the Master Key and another unique Counter (e.g. 02)
to gain a unique MAC Kkey. If the keys used for encryption is compromised it is
computationally hard to find a pre-image for the one-way hash function to determine the
Master Key or the derived MAC key. Similarly if the MAC key is compromised it is hard to
reverse the process to find the Master Key or encryption key. This cascade construct performs
two hashes for each derived key, once using Keccak on the Master Key and unique Counter,
then again with the Skein algorithm and another unique Counter. Finally it XORs the
resulting random hash digests together to produce the derived key. This adds additional
assurances that the derived key will not be easily reversed if there is a flaw in either
algorithm discovered in the future.

¢ The resulting derived keys are 512 bits in length. The first and second derived keys are used
for AES-CTR and Salsa20. Because the key lengths for these encryption algorithms are only
256 bits in length, these two derived keys are truncated to just the first 256 bits. The third and
fourth derived keys which are used for Keccak and Skein remain at 512 bits.

15.3 Encryption and authentication of database keys

The following describes the encryption and authentication of the actual database keys using the
derived keys from earlier:

Database Keys — The actual AES-CTR, Salsa20, Keccak and Skein database keys, concatenated
together
Nonce; — A static 96 bit nonce for AES-CTR (000000000000000000000000 in hexadecimal)

Nonce, — A static 64 bit nonce for Salsa20 (0000000000000000 in hexadecimal)
Counter, — A 32 bit counter for AES-CTR, starting at 0 and incrementing by 1 for each block

being encrypted
Counter; — A 64 bit counter for Salsa20, starting at 0 and incrementing by 1 for each block

being encrypted

Keystream; — AES-CTR(Derived Key,, Nonce,, Counter)
Keystream, — Salsa20(Derived Key,, Nonce,, Counter;)
Encrypted Database Keys — Keystream, & Keystream, & Database Keys

MAC; < Keccak-512(Derived Keys | | Encrypted Database Keys)
MAC, < Skein-512(Derived Key, | | Encrypted Database Keys)
Cascade MAC — MAC; & MAC,

» After encryption and authentication, the encrypted database keys and the Cascade MAC are
stored in the database. To decrypt the database, a user will enter their password, load the

keyfile and set the number of iterations. It will perform the same steps above to generate the
derived Keccak and Skein keys, recreate the MAC against the stored encrypted database keys,
then match that against the stored MAC. Any incorrect match may mean an incorrect
password, keyfile or number of iterations used. Alternatively, if the password, keyfile or
number of iterations is correct it could indicate a more serious matter such as database
corruption or that someone has tampered with the database.

16 Using HTMLS5

Thomas Ptacek's article, Javascript Cryptography Considered Harmful 158 raises a valid point
about JavaScript code being delivered by the web server being insecure against MITM attacks.
The article in general however is now outhated and blanket statements saying that all
JavaScript cryptography is harmful is misleading and inaccurate. In reality, there are

sensible (1591 and secure [160] solutions to the problems raised and all of his other concerns have
been reasoned and mitigated 1611 as well.

In summary, most points they made are not applicable for this program due to the fact that the
source code is downloaded as a signed .tar.xz 162 archive file and users are expected to verify

the file's GnuPG [243] signature with the one from this website to ensure its authenticity. From
there the code should be run locally from the machine by going to the directory and running
index.html which will load the website and code into the browser. This means all code is always
running locally from the local hard drive and the web address will be similar to
file:///media/truecryptl/jericho/client/index.html. All the executable code is self
contained and does not rely on any server delivered JavaScript at all. It essentially becomes a
regular client side application except it runs inside a browser to make use of the browser's
rendering and JavaScript runtime engines. This itself mitigates the majority of the problems the
Matasano Security article raised.

HTMLS5 has more advantages than disadvantages. It's easier and faster to develop with. New
APIs allow for cryptography 1151 persistent database storage [163], messaging [164] and file

management [165], Browsers are first in line for security updates and the best ones are open
source and trustworthy. People rely on browsers to have good security to do their Internet
banking and shopping online. The source code does not need to be compiled. Users or security
researchers can verify the source code being run live in the browser using Chromium or

Firefox built-in Web Development tools or with browser add-ons like Firebug [166], This allows
them to verify the code is doing exactly what it should be. HTMLS is cross platform, one code
base can literally run on Windows, Linux, Mac, phones and tablets simply with the latest web
browser. Newer projects such as Electron [246] or PhoneGap [247] allow the packaging of HTML5
code into a native app for various platforms. One of the goals of the project is to get a truly
secure chat program functioning on an open hardware platform and an open operating system
like Firefox OS[167], This is a true open source OS for smartphones and tablets from a reputable
organisation that believes that individuals' security and privacy on the Internet is
fundamental (1681,

Currently this program has been tested to work in the latest versions of the open source

browsers Firefox (1691 and Chromium 79, Some of the other popular browsers have not
implemented the Web Crypto API yet. The layout is responsive and will work on desktops and
tablets. Some more work and testing is still required to get it working nicely on mobile. In
particular a method to load the one-time pads into the program using later versions of Android.

Using Firefox is recommended as they are open source and are not involved in the PRISM

surveillance program [171], Unfortunately nobody can say for sure about that with Google so the
proprietary Google Chrome browser is not recommended. Firefox is still preferred in

comparison to Chromium as Google were recently caught out 172! trying to backdoor it with a
closed source binary which captured audio from the microphone. There's nothing stopping
them from trying similar acts of subversion in future unless users are watching closely for these
issues.

It is recommended to create a new browser profile 173! inside a TrueCrypt [53 volume to protect
the one-time pads when they are stored inside the browser storage. In a future version of the
program it will keep the one-time pad database encrypted locally at all times.

The main crypto library this program uses is Crypto]S 174, There were some other libraries that
would be good to use but they either did not work in a HTML5 Web Worker [175] which makes

CPU intensive cryptographic functions take significantly longer and blocks [176] the user
interface thread, or their outputs couldn't be verified from the reference test vectors. It is
important to verify that the code can produce the same hash outputs as the test vectors from
the specification documents. This ensures the program is not using a faulty or backdoored
version of the algorithm that gives incorrect results.

17 REST API

e The client browsers communicate to and from the server using the REST API on the server.
The server side code is currently written for the latest version of PHP 7.x using best security

practices for protection against SQL injection [17° and other attacks. This may be rewritten in

a different language in a future release e.g. NodeJS 1791 to have a common cryptographic
library base across the client and server.

o The server sends CORS 77 HTTP headers so that the client browsers can connect and make a
cross-origin request. This is needed because the program is run locally from the file:///
location and not served by a webserver. If the JavaScript code was served from a web server
it could let an attacker perform a MITM attack and alter the code, this could then make the
user send unencrypted messages and they would not be any wiser.

« For now the browsers use a Fetch [181] request to send/receive data to/from the server. The
reason for this is that the chat can be delayed like email (encrypted messages remain on the
server until they are received), or real-time if users are connected at the same time. If a user
is connected it will check for new messages from the server every 3 seconds which is fast
enough to appear as real-time and does not stress the server too much.

17.1 Initiate self destruct request

This is the request a client makes if they want to wipe the all the other chat group user's local
one-time pad databases. It is very disruptive and designed for use only in an emergency. This
command is sent encrypted and authenticated via the secure message channel. This is so only a
valid user with the set of one-time pads can trigger an auto nuke. An attacker with access to the
server cannot change anything to trigger the chat group users to delete their local databases in
order to disrupt communications.

To trigger the request, the user will visit a separate screen in the user interface and click a

button. The client will automatically send a regular message with the string code

init auto nuke. This will be encrypted with one of the one-time pads, authenticated with the
MAC and sent to the server like a regular message. The initiating user's current local database of
one-time pads will then be wiped and their screen cleared.

17.2 Self destruct initiated response

If a chat group user is checking for new messages and an authentic message comes through
with the code init auto nuke, instead of continuing to receive and process new messages,
the user's client will show a notification that the self destruct has been initiated by the user who
initiated it, then the program will immediately wipe their local database of any data and clear
the screen of any sent or received messages.

After all users have had their local databases wiped, the server database of one-time pads can
be cleared by the server administrator. There is no real risk in leaving the encrypted messages
on the server for a longer period of time as every one-time pad encrypted message has
information-theoretic security and plausible deniability.

18 Message encoding

Each one-time pad is made up of 192 bytes which is 384 hexadecimal symbols or 1536 binary
digits. See the table below for more information:

Full one-time pad

Bytes 192
Hexadecimal symbols 384
Binary digits 1536

Each message is made up of three main parts, the pad identifier; the message parts and the
message authentication code. The one-time pad is used to encrypt the message parts and the
MAC tag.

Pad identifier Total message parts MAC tag
Bytes 7 121 64
Hexadecimal symbols 14 242 128
Binary digits 56 968 512

This can be further broken down to the individual message parts. See below for the length of
each part:

Pad identifier Message Actual message length Message sent timestamp MAC tag

Bytes 7 115 1 5 64
Hexadecimal symbols 14 230 2 10 128
Binary digits 56 920 8 40 512

« All messages that are sent/received are encoded to hexadecimal format first which is just
stored in a normal JavaScript string. This is to make transport using JSON easier rather than

trying to send UTF-8 encoded data over the wire. A hexadecimal symbol (Nibble [188]) is 4 bits,

and two hexadecimal symbols makes 8 bits (one Octet/Byte [18%]) and can be represented as a
single ASCII character.

¢ The Pad identifier is the first 7 bytes (56 bits) from the one-time pad. This identifies to the

receiver which pad should be used to decrypt the message. This is used rather than sending
the sequence number of the one-time pad to remain in sync with the other users as that
could reveal to an attacker the number of messages sent so far.

¢ The maximum message length has been set at 115 bytes (115 ASCII characters) for now. This

is slightly less than the size of a tweet 1991 (140 characters) or an SMS 1911 (160 characters).
This is because generating enough random data takes a long time. Making a message length
longer than that, where the one-time pad may or may not be fully used is wasteful. If users
need more than 115 characters they can simply send a second message. In future a new
feature will be added to allow a message to be spread over multiple one-time pads.

o UTF-8 international language support has been added for sending/receiving messages
including correct counting of bytes when sending messages. An encoding process converts
these UTF-8 characters to bytes before encryption and the reverse decoding is done after
decryption.

o If a message is less than 115 bytes in length it is padded to the right (up to the maximum 115
bytes) with random bits generated from the Web Crypto API. This hides the actual length of
the message to frustrate any cryptanalysis. For example if no padding was added and the
message was simply "hi" then the ciphertext would be the same length which could aid the
attacker. Of course there are a few other words with only two letters which allows for some
uncertainty. However if the message is padded up to the full 115 bytes each time, then an
attacker knows nothing about the true length of the message, only that it is somewhere
between 1 and 115 bytes long.

1. Get the length of the plaintext

Message plaintext
message.

2. If the plaintext length is less than the
message length (115 bytes), get
random bits from the Web Crypto API
to fill up to the maximum 115 bytes.

Random padding

3. Append the padding to the end of
Message plaintext Random padding the message. The message with
padding is now 115 bytes long.

Plaintext with padding

« The Actual message length is the true message length without any padding. It is an aid in
the decryption process so it can remove the correct number of padding bytes from the end of
the message and reveal the original plaintext automatically. This field is always 1 byte in
length which is enough to represent the message length. For example, if the message was 70
bytes long, then the number 70 is converted to binary and left padded (if necessary) to be 8

bits long. 8 bits can have 28 (256) possible values which represents the numbers from 0 to
255. One byte of information can store the actual message length of 1 to 115 bytes easily. The
actual message length is also encrypted with one byte from the one-time pad so it is
impossible for an attacker to know the actual message length without the one-time pad. An

attacker only knows that the length of a message is between 1 and 115 bytes. When
decrypting the message, the message length value is checked to make sure it is in the correct

range. This helps avoid denial of service [207] (DOS) and/or buffer overflow attacks.

A UNIX timestamp is sent along with the message in the Message sent timestamp field to
signify when the message was sent from the sender's computer. This is converted to binary
and sent with the message packet. 5 bytes are reserved for this. It could easily be 4 bytes (32

bits), but an extra byte was added to avoid the year 2038 problem [192, This timestamp is also
encrypted with 5 bytes of the one-time pad. This prevents an attacker from interfering with
the date or time of the message which could be critical in some circumstances. It is also used
for correctly reordering messages on the client side when retrieving multiple messages from
the server. This prevents an attacker reordering messages from them gaining access to the
server or by delaying server responses.

The final part of the encoding is the MAC tag. This MAC tag is sent along with each message
for authentication and integrity to ensure that the message has not been tampered with. The
MAC tag is also encrypted with part of the one-time pad so it is also information-theoretically
secure. The process is explained in depth further on.

19 Message encryption process

¢ The program first receives the plaintext message from the user from the text box when they
click the Send message button.

e Then it does a lookup on the user's local database of one-time pads and selects the first
available one-time pad allocated to that user for sending messages. The one-time pads for
sending/encrypting messages are evenly pre-allocated and grouped under each user in the
chat group e.g. alpha, bravo, charlie etc. This prevents one user from encrypting a messsage
using the same one-time pad as another user.

¢ Once a one-time pad has been selected, it removes it from the local database and splits it into
the pad identifier, the message parts and the MAC parts. The encryption process is as follows:

Message parts in binary

1. Concatenate the binary

Plaintext with padding | Message length | Message timestamp message parts together

'

Message timestamp | Message length | Plaintext with padding

3. XOR message parts with

One-time pad message parts in binary the one-time pad message

2. Depending on the key,
randomly reverse the binary
message parts on certain
messages.

parts.

4. Concatenate the pad
Pad identifier in binary Ciphertext message parts in binary identifier to the front of the
ciphertext message parts.

¢ In step one, the plaintext with padding, the message length and the timestamp are converted

to binary and concatenated together.

In step two, because some of the bits of the 40 bit UNIX timestamp can be predictable, this

could leave a crib (149 for an attacker and they could recover those few bits of the key. This
however would not compromise the remainder of the plaintext because each bit of the one-
time pad is random and independent from the rest. For example, if the timestamp was
1406440512 for 2014-07-27 at 5:55am in UTC then that would convert to binary as

00000000 01010011 11010100 10010100 01000000. If we compare another time in the
future, 1503040500 for 2017-08-18 at 7:15am in UTC then that would convert to binary as
00000000 01011001 10010110 10010011 11110100. The first 12 bits are the same in both
timestamps even though the dates are years apart. This is because the timestamp field is
larger than currently required in order to future proof the protocol. If it was the usual 32 bits
then eventually there would be incorrect dates and times shown in the program after 19 Jan

203811921,

To remove this as a possibility for being a crib, the program randomly reverses the binary
message parts (including the plaintext with padding, the message length and the timestamp)
depending on the second last byte in the one-time pad. It does this by converting this byte to
an integer value (0 - 255), then uses that number modulo 2. This will return a random integer
of 0 or 1. A one will mean the message parts get reversed while a zero will mean they stay the
same. This means that every message, an attacker does not know for certain whether the
timestamp is at the front or end of the message parts. They also do not know whether the
true plaintext begins at the start of the message or the end. Because all users have the same
one-time pad, they can reverse this transformation to get the message parts back in proper

order after decryption. This transformation has a similar purpose to Russian copulation [193],

In the third step, the XOR 8] operation is what does the encryption. Each bit of the plaintext
is encrypted with a unique bit of the one-time pad. With a truly random one-time pad the

encryption is unbreakable even in theory [194],

The final step concatenates the pad identifier to the ciphertext message parts. The pad
identifier helps the other users determine which one-time pad was used to encrypt the
message.

Once the message has been encrypted, the MAC is created using a random MAC algorithm
that was selected and then encrypted with part of the one-time pad. This process is explained
further on. The MAC is concatenated to the end of the ciphertext and sent with the message
to the server. The server holds the message until all the other users have retrieved it.

20 Message decryption process

The user first checks for encrypted messages on the server that are not sent by them and have
not been read already by them. This will retrieve all other messages sent by users in the same
chat group. Once the encrypted messages have been retrieved by the user, the messages are
marked as read on the server by them. Once all users have read the message, they are deleted
from the server in a cleanup process which runs every 30 seconds. The process for decryption is
generally the same as encryption but in reverse order. For each encrypted message that is
received:

e The program selects the sender of the message e.g. alpha, bravo, charlie etc and does a
lookup on the local database of one-time pads for that user. The program selects the pad

file:///home/j/Documents/Jericho-current/otpchat/livesite/information.html#ref193
file:///home/j/Documents/Jericho-current/otpchat/livesite/information.html#ref193
file:///home/j/Documents/Jericho-current/otpchat/livesite/information.html#ref193
file:///home/j/Documents/Jericho-current/otpchat/livesite/information.html#ref193

identifier (first 7 bytes) from the ciphertext which will match the first 7 bytes from one of the
one-time pads in the database. The pad identifier for each one-time pad is stored in a
separate field which makes searching faster. It then retrieves the one-time pad for the
message and takes off the pad identifier.

o The MAC is then decrypted with the last 64 bytes of the one-time pad. Using the ciphertext
message parts, the one-time pad and the random algorithm for the MAC, the MAC is
calculated. If this matches the MAC sent, then the message is valid and has not been
tampered with. Decryption of the message will follow. If the message matches the MAC sent
with the message then an 'Authentic’ status is displayed to the user. If the message is not
valid, the user is warned that tampering has occurred and the decryption process will not be
attempted.

¢ The one-time pad message parts is then XORed with the ciphertext message parts (including
the plaintext with padding, message length and timestamp). This returns the decrypted text
with padding, the actual message length and the time the message was actually sent.

e Depending on the second last byte of the key, the decrypted message parts are returned to
their original order (unreversed) if that transformation was made in the encryption process.

o The message length part is read and this gets the length of the actual message in bytes.
Reading from the start of the plaintext message up to the message length will retrieve the
actual plaintext without padding.

» The one-time pads for any messages received and verified authentic are then deleted from
the user's local database.

21 Message Authentication Code

The one-time pad is vulnerable to a bit-flipping attack (195 if not authenticated with a MAC.
Therefore the program calculates and sends a secure MAC with each message. Both users have a
shared secret, which is the one-time pad for each message so the MAC can be calculated and
verified by either person. This simple MAC construction is a temporary solution which should
be fine until there is time to write a more standardised one-time MAC implementation based on

the Carter-Wegman MAC [187],

The construction of this MAC is as follows:

Random Number — Get the last byte of the one-time pad used to encrypt the message e.g. 7f
and convert it to an integer i.e. 127.

MAC Algorithms < The list (array) of MAC functions available i.e. [Skein-512, Keccak-512].
Both produce a 512 bit output.

Number of MAC Algorithms — The number of MAC functions available i.e. 2.

Ciphertext — The pad identifier (56 bits) and ciphertext message parts (968 bits) concatenated
together.

Key < The full one-time pad (1536 bits).

MAC Encryption Key < The last 512 bits of the full one-time pad reserved for encrypting the
MAC tag.

MAC Algorithm Index — Random Number % Number of MAC Algorithms e.g. 127 % 2 = 1.
MAC Algorithm — MAC Algorithms [MAC Algorithm Index] e.g.

MAC Algorithms[1l] = Keccak-512
MAC Tag — MAC Algorithm(Key | | Ciphertext)
Encrypted MAC Tag — MAC Encryption Key & MAC Tag

» For each message sent, a random MAC algorithm from a pool of algorithms is chosen to
authenticate the message. This provides some protection in the case that a fundamental flaw
is discovered in one of the hash algorithms in the future. It also makes message forgery more
difficult as an attacker now only has a 0.5 probability to guess the correct hash algorithm that
was used to authenticate each message. Currently there are only 2 hash algorithms that are
used with the program due to the lack of current library support. Currently the hash
functions used are the 512 bit versions of Keccak and Skein. These 512 bit MACs will provide

2256 collision resistance and 2512 pre-image resistance against regular computers. They will

provide 2170 collision resistance 1961 and 2256 pre-image resistance against quantum
computers.

¢ The program first gets a random index number from an array of available algorithms, then it
uses this algorithm to create the MAC. It selects the random array index by using the last byte
of the one-time pad. It converts this byte to an integer value (0 - 255), then uses that number
modulo the number of MAC algorithms available. Because there are only two MAC
algorithms at the moment, that will return an integer of 0 or 1 which references the index of
the algorithm in an array. For all possible bytes from 0 - 255 this provides an even
distribution of 0 - 1 outputs.

e The process is to perform the encryption on the message parts first, then calculate the MAC
from the ciphertext and use the one-time pad as the key. This provides integrity of the
ciphertext and integrity of the plaintext. Also it does not provide any information on the
plaintext since no structure from the plaintext has been carried into the MAC. Skein and
Keccak are newer, more secure hash algorithms and do not need more complicated
constructions like HMAC to prevent length extension attacks unlike hash functions based on

the the Merkle-Damgard construction [1%8], The MAC can be created simply by prepending the
message with the key and hashing it [19911200] 'j e H(K | | M).

« Finally the MAC tag is encrypted with the last 64 bytes (512 bits) of the one-time pad. This

retains the information-theoretically secure [25] properties for the MAC tag as well as the
message. No attacker can know if they have successfully deciphered the encryption by brute
forcing combinations of the key to create a valid MAC tag. Nor can an attacker know if they
have created a successful forgery when they do not know the correct key.

22 Failsafe CSPRNG

For some functions of the program, general random bits or random numbers are needed. For
these functions it is not critical to have true randomness so a strong CSPRNG 123! will suffice:

¢ Padding messages with random bits up to the maximum message length.
¢ Generating random numbers in order to send decoy messages at random intervals.

e Generating random 512 bit nonces for each server request.

Most browsers now support the HTML5 Web Crypto API getRandomValues() function (691 which
uses the operating system's cryptographically secure random source (e.g. /dev/urandom on

Linux). The Web Crypto API could however be compromised by running a closed source
operating system (e.g. Windows or MacOS) - in which case Microsoft or Apple could have been

paid off by the NSA [68] to make it use the Dual EC DRBG [13] by default as far as anyone in the
public knows. Or it could also be compromised by a faulty browser implementation. Or it could
also be compromised by the underlying operating system's implementation such as it uses

Intel's questionable on-chip RNG [671 (RDRAND). No-one really has time to continually review the
various browser implementations of the Web Crypto API or the various operating system
implementations of their RNGs to make sure they are secure. So if the browser's
implementation of this CSPRNG is compromised then a failsafe RNG has been devised.

The program will use a 256 bit key, to create a keystream of random bits using the failsafe
CSPRNG Salsa20. This keystream is then XORed with the random bits returned from the Web
Crypto APIL A unique 256 bit key is generated for each user by the TRNG and exported with the
user's one-time pads upon pad creation. When they load the one-time pads, this key is also
loaded into memory. The program will start the nonce at 0, and increment by 1 after every
request for random bits. The nonce value is persisted in the local database storage so a nonce is

never re-used even if the program is restarted. The nonce can be safely incremented to 253 - 1

(the maximum safe integer 201 in JavaScript) without failure, but this is very unlikely to ever be
reached under normal use.

23 Self destruct process

The protocol normally erases the one-time pad as soon as a message is sent. The one-time pad is
also removed from a receiver's database after they have successfully received and
authenticated a message. This is a more secure form of off the record chat similar to the OTR

messaging protocol 2921, OTR has good principles but lacks the perfect secrecy (25! and plausible
deniability 34 of the one-time pad.

One of the key features of the program is being able to trigger a duress code [204 which instantly
and automatically wipe the local database of one-time pads, the other users' local databases of
one-time pads and clear any messages remaining on screen.

This should be initiated in an emergency situation only. Potentially if a chat group user believes
their database of one-time pads may be compromised soon, or Three Letter Agencies [203] are

inbound on a helicopter assault 8% then they should initiate the self destruct. This means that
all the users are no longer in possession of the decryption keys so it means they cannot be
compelled to produce them under duress or in a court of law. No encryption keys means no way
to decrypt past messages. Without the real encryption keys, a user under duress can easily think
of any plausible plaintext message for any encrypted message and an aggressor will not know
the difference. A simple way to calculate this for a one-time pad, given any ciphertext is to
simply create a fake message, convert the ciphertext and fake message to binary, then XOR
them together which will produce a plausible key to give to an attacker.

24 Extra security considerations

There are a number of potential attacks which are more around social engineering [205], side
channel attacks, retrieving the one-time pads by other means and attacks on the server. There
are ways to mitigate these issues as well.

» Keyloggers, trojans or spyware on the PC could compromise the one-time pads or chat
messages. To mitigate this, the one-time pads should be generated on a clean install of an
open source Operating System and a clean browser install. Running different virtual

machines for different programs like Qubes 0S 591 to isolate any potentially malicious
programs could be effective. A clean browser install means removing all the inbuilt
proprietary extensions like Java and Flash. When creating the one-time pads, the PC should
be physically unplugged from any network and any wireless/bluetooth adaptors should be
disabled. The pads should be saved to removable media such as MicroSD card, SD card or
USB drive. The Operating System should be secure wiped from the hard drive after

completion. Booting into a Linux Live CD [206] would be useful for this. For running the chat
program, the OS should be open source e.g. Linux and ideally the browser software should be
compiled from source code. Firewalls must be activated to block all incoming requests on all
ports by default and only respond to requests that were made from the original client.
Shared computers in a library or cafe should not be used.

e An attacker could steal/copy the one-time pads as they are being delivered to the other
person. The encrypted one-time pad database should be kept on a small MicroSD card, SD
card or USB drive with the person at all times. Securing it in a zipped up pocket can help
prevent pickpockets. If plausible deniability is needed, the one-time pads should be stored
inside an encrypted hidden volume with Truecrypt or other software. If the one-time pads
have been misplaced they have not been in the user's possession for a certain amount of
time, they must be assumed to be compromised and fresh ones must be created. Once loaded
into each device, the encrypted text file containing the one-time pads from the removable
media should be erased. This leaves only one copy of the pads which is being used by the
software. The software will automatically remove one-time pads as a message is received or
sent.

¢ The server could be attacked or communications interfered with. Encrypted messages stay on
the server for a short period of time until the other chat participants retrieve them from the
server which is similar to email. However the requests to the server are frequent enough that
if both users are connected at the same time then it behaves as real-time chat. There is
potential for a nation state attacker to block communications and interfere with the
transmission of encrypted messages. They will not be able to decrypt any of the messages,
nor will they be able to forge or alter a message without detection due to the strong MAC.
However they could block messages being received, or hack into the server and delete
messages from the server, or perform a DOS type attack on communications. If an attacker
like the NSA has already targeted the server there is not much that can be done about it. The
best option may be to set up a new server somewhere else that they do not know about and
inform chat participants of the new server address. In the meantime the standard
precautions for server installs should be used e.g. setting up a firewall, blocking all ports
except for port 80 which will be used by the clients to connect to the server and port 22 for

SSH [208] 50 the administer can still log in to the server. Changing the SSH port to a non-
standard port and using public key authentication could also be a consideration.

¢ Users will not be completely anonymous when communicating with the server. Potentially a
government may intercept the highly encrypted communications going from their IP address
to the server, and also from the server to the other user's IP. They may be suspicious at being
unable to decrypt the messages and try tracing the IP back to its source so they can arrest the
user for suspected terrorism. If everyone was using the program it would be considered
normal communications so they would be less likely to target a particular individual. Users

that are concerned about this could use a VPN or SOCKS proxy 209 with their browser to

tunnel their connections through a server in a different country. For added protection they
could always have chat conversations in a public place, e.g. cafe, library, WiFi hotspot or buy
a cheap pre-pay smartphone which will allow them to tether the Internet connection to their
laptop. If using a mobile phone, it would be important to go somewhere different each time
and then connect to the cellular network. Also the GPS on the phone should be disabled so it
is harder to triangulate their position. For complete security the main battery should be
physically removed when done and a Faraday bag used to block any remote activation

attempts even while it is turned off210], The program does not currently work with the Tor

Browser Bundle [211] because they block access to the local disk, so that rules out HTMLS5
Local Storage use. However it is possible to configure the Tor application manually and use
that as a SOCKSS5 proxy with a newer version of Firefox. It may even be possible to configure

Tails 0S[212] to load a Firefox profile from a writable USB drive which could store and update
the one-time pad database.

e Users could be forced to hand over their one-time pads with rubber-hose cryptanalysis 213! or

beaten with a wrench [214], While quite unlikely it could be possible in some countries. The
software makes sure that after a message is sent, the one-time pad is deleted from the device
so it can never be re-used. Then when the other user retrieves the message from the server,
the encrypted message is deleted from the server. In a group scenario, all users of the group
must have read the message before it gets deleted from the server. When a message has been
decrypted on the other user's device, it is deleted from their local database as well. This
leaves no way to decrypt past messages. It also gives the user plausible deniability that they
can decrypt past messages again or remember exactly what was said. To clear messages from
the screen one simply needs to refresh the page using the F5 key on their keyboard. To clear
everything in an emergency, the self destruct should be initiated. This option is available
from the main menu. It will delete the one-time pads from all devices connected to the server.
If one of the users is offline, as soon as they come online the will receive the self destruct
command and it will forcefully clear the database as well. If users are currently online it will
also clear sent messages on the screen of each device. This should be reserved for an actual
emergency because it is time consuming to recreate and deliver new one-time pads.

25 References

« 1. Wikipedia - Global surveillance disclosures
https://enwikipedia.org/wiki/Global_surveillance_disclosures_(2013-present)

e 2. Wikipedia - National Security Agency
https://en.wikipedia.org/wiki/Nsa

e 3. The Guardian - Revealed: how US and UK spy agencies defeat Internet privacy and security
http://www.theguardian.com/world/2013/sep/05/nsa-gchg-encryption-codes-security

¢ 4. Wired - The NSA Is Building the Country's Biggest Spy Center
http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/

¢ 5. Wikipedia - Five Eyes - Future enlargement
https://enwikipedia.org/wiki/Five_Eyes#Future_enlargement

6. Norddeutscher Rundfunk - Snowden-Interview: Transcript
https://www.ndr.de/nachrichten/netzwelt/snowden277_page-2.html

7. United Nations - Universal Declaration of Human Rights

https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013-present)
https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013-present)
https://en.wikipedia.org/wiki/Nsa
https://en.wikipedia.org/wiki/Nsa
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/
http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/
https://en.wikipedia.org/wiki/Five_Eyes#Future_enlargement
https://en.wikipedia.org/wiki/Five_Eyes#Future_enlargement
https://www.ndr.de/nachrichten/netzwelt/snowden277_page-2.html
https://www.ndr.de/nachrichten/netzwelt/snowden277_page-2.html

http://www.un.org/en/documents/udhr/

8. Der Spiegel - Prying Eyes: Inside the NSA's War on Internet Security
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-
a-1010361.html

9. Der Spiegel - Shopping for Spy Gear: Catalog Advertises NSA Toolbox
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-
devices-a-940994.html

10. The Intercept - Exceptionally Compartmented Information
https://theintercept.com/2014/10/10/core-secrets/

11. Wikipedia - Enigma machine - Surviving machines
https://enwikipedia.org/wiki/Enigma_machine#Breaking Enigma

12. The Guardian - Edward Snowden: NSA whistleblower answers reader questions
http://www.theguardian.com/world/2013/jun/17/edward-snowden-nsa-files-whistleblower

13. A Few Thoughts on Cryptographic Engineering - The Many Flaws of Dual_EC_DRBG
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html

14. SafeCurves - Choosing safe curves for elliptic-curve cryptography
http://safecurves.cryp.to

15. Wikipedia - National Institute of Standards and Technology - Controversy
https://enwikipedia.org/wiki/National_Institute_of_Standards_and_Technology#Controversy

16. Ars Technica - NSA employee will continue to co-chair influential crypto standards group
http://arstechnica.com/security/2014/01/nsa-employee-will-continue-to-co-chair-influential-
crypto-standards-group/

17. A Few Thoughts on Cryptographic Engineering - Multiple encryption
http://blog.cryptographyengineering.com/2012/02/multiple-encryption.html

18. Der Spiegel - Prying Eyes: Inside the NSA's War on Internet Security - TUNDRA
http://www.spiegel.de/international/germany/bild-1010361-793640.html

19. Wikipedia - Daniel J. Bernstein
https://en.wikipedia.org/wiki/Daniel_]._Bernstein

20. Wikipedia - Bruce Schneier
https://en.wikipedia.org/wiki/Bruce_Schneier

21. Attacking and defending the McEliece cryptosystem - Daniel J. Bernstein, Tanja Lange and
Christiane Peters
http://cryp.to/codes/mceliece-20080807.pdf

22. Wikipedia - Hardware random number generator
https://en.wikipedia.org/wiki/Hardware_random_number_generator

23. Wikipedia - One-time pad
https://enwikipedia.org/wiki/One-time_pad

24. Wikipedia - Message authentication code - One-time MAC
https://en.wikipedia.org/wiki/Message_authentication_code#One-time_MAC

http://www.un.org/en/documents/udhr/
http://www.un.org/en/documents/udhr/
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
https://theintercept.com/2014/10/10/core-secrets/
https://theintercept.com/2014/10/10/core-secrets/
https://en.wikipedia.org/wiki/Enigma_machine#Breaking_Enigma
https://en.wikipedia.org/wiki/Enigma_machine#Breaking_Enigma
http://www.theguardian.com/world/2013/jun/17/edward-snowden-nsa-files-whistleblower
http://www.theguardian.com/world/2013/jun/17/edward-snowden-nsa-files-whistleblower
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://safecurves.cr.yp.to/
http://safecurves.cr.yp.to/
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology#Controversy
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology#Controversy
http://arstechnica.com/security/2014/01/nsa-employee-will-continue-to-co-chair-influential-crypto-standards-group/
http://arstechnica.com/security/2014/01/nsa-employee-will-continue-to-co-chair-influential-crypto-standards-group/
http://arstechnica.com/security/2014/01/nsa-employee-will-continue-to-co-chair-influential-crypto-standards-group/
http://arstechnica.com/security/2014/01/nsa-employee-will-continue-to-co-chair-influential-crypto-standards-group/
http://blog.cryptographyengineering.com/2012/02/multiple-encryption.html
http://blog.cryptographyengineering.com/2012/02/multiple-encryption.html
http://www.spiegel.de/international/germany/bild-1010361-793640.html
http://www.spiegel.de/international/germany/bild-1010361-793640.html
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
https://en.wikipedia.org/wiki/Bruce_Schneier
https://en.wikipedia.org/wiki/Bruce_Schneier
http://cr.yp.to/codes/mceliece-20080807.pdf
http://cr.yp.to/codes/mceliece-20080807.pdf
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Message_authentication_code#One-time_MAC
https://en.wikipedia.org/wiki/Message_authentication_code#One-time_MAC

e 25. Wikipedia - Information-theoretic security
https://en.wikipedia.org/wiki/Information-theoretic_security

¢ 26. Wikipedia - One-time pad - Key distribution
https://en.wikipedia.org/wiki/One-time_pad#Key_distribution

¢ 27. Wikipedia - Passphrase
https://en.wikipedia.org/wiki/Passphrase

 28. Wikipedia - Key derivation function
https://en.wikipedia.org/wiki/Key_derivation_function

¢ 29. Wikipedia - Stream cipher
https://en.wikipedia.org/wiki/Stream_cipher

¢ 30. Crypto Museum - Washington-Moscow Hotline - 1963: Teleprinter link
http://www.cryptomuseum.com/crypto/hotline/

¢ 31. Jericho Comms - Main website download page
https://joshua-m-david.github.io/jerichoencryption/

¢ 32. GitHub - Jericho Comms source code repository
https://github.com/joshua-m-david/jerichoencryption/

e 33. Free Software Foundation - GNU General Public License
https://www.gnu.org/licenses/gpl-3.0.en.html

¢ 34. Wikipedia - Plausible deniability
https://en.wikipedia.org/wiki/Plausible_deniability

¢ 35. Wikipedia - Shor's algorithm
https://enwikipedia.org/wiki/Shor's_algorithm

¢ 36. Washington Post - NSA seeks to build quantum computer that could crack most types of
encryption
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-
computer-that-could-crack-most-types-of-encryption/2014/01/02/8{ff297e-7195-11e3-8def-
a33011492df2_story.html

¢ 37. Washington Post - The 'Black Budget' - How intelligence agencies spend $52 billion
http://www.washingtonpost.com/wp-srv/special/national/black-budget/project-files/black-
budget-doubletruck-web.pdf

« 38. National Security Agency - Cryptography Today
https://www.nsa.gov/ia/programs/suiteb_cryptography/

¢ 39. A Few Thoughts on Cryptographic Engineering - A riddle wrapped in a curve
http://blog.cryptographyengineering.com/2015/10/a-riddle-wrapped-in-curve.html

 40. International Association for Cryptologic Research - Neal Koblitz and Alfred J. Menezes - A
Riddle Wrapped in an Enigma
http://eprint.iacr.org/2015/1018.pdf

» 41. Wikipedia - McEliece cryptosystem
https://enwikipedia.org/wiki/McEliece_cryptosystem

https://en.wikipedia.org/wiki/Information-theoretic_security
https://en.wikipedia.org/wiki/Information-theoretic_security
https://en.wikipedia.org/wiki/One-time_pad#Key_distribution
https://en.wikipedia.org/wiki/One-time_pad#Key_distribution
https://en.wikipedia.org/wiki/Passphrase
https://en.wikipedia.org/wiki/Passphrase
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/Stream_cipher
http://www.cryptomuseum.com/crypto/hotline/
http://www.cryptomuseum.com/crypto/hotline/
https://joshua-m-david.github.io/jerichoencryption/download.html
https://joshua-m-david.github.io/jerichoencryption/download.html
https://github.com/joshua-m-david/jerichoencryption/
https://github.com/joshua-m-david/jerichoencryption/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/Plausible_deniability
https://en.wikipedia.org/wiki/Plausible_deniability
https://en.wikipedia.org/wiki/Shor's_algorithm
https://en.wikipedia.org/wiki/Shor's_algorithm
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
http://www.washingtonpost.com/wp-srv/special/national/black-budget/project-files/black-budget-doubletruck-web.pdf
http://www.washingtonpost.com/wp-srv/special/national/black-budget/project-files/black-budget-doubletruck-web.pdf
http://www.washingtonpost.com/wp-srv/special/national/black-budget/project-files/black-budget-doubletruck-web.pdf
http://www.washingtonpost.com/wp-srv/special/national/black-budget/project-files/black-budget-doubletruck-web.pdf
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://blog.cryptographyengineering.com/2015/10/a-riddle-wrapped-in-curve.html
http://blog.cryptographyengineering.com/2015/10/a-riddle-wrapped-in-curve.html
http://eprint.iacr.org/2015/1018.pdf
http://eprint.iacr.org/2015/1018.pdf
https://en.wikipedia.org/wiki/McEliece_cryptosystem
https://en.wikipedia.org/wiki/McEliece_cryptosystem

e 42. Biometric Update - UAB researchers find that automated voice imitation can spoof voice
authentication systems
http://www.biometricupdate.com/201509/uab-researchers-find-that-automated-voice-
imitation-can-spoof-voice-authentication-systems

¢ 43. Schneier on Security - How the NSA Attacks Tor/Firefox Users With QUANTUM and
FOXACID
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html

¢ 44. Wikipedia - Man-in-the-middle attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

¢ 45. Moxie Marlinspike - SSL And The Future Of Authenticity
http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/

 46. StackExchange - Information Security - Are self-signed certificates actually more secure
than CA signed certificates now?
http://security.stackexchange.com/questions/42409/are-self-signed-certificates-actually-more-
secure-than-ca-signed-certificates-no

¢ 47. Cossack Labs - Why you should avoid SSL for your next application
https://www.cossacklabs.com/avoid-ssl-for-your-next-app.html

¢ 48. Wikipedia - Exclusive or
https://en.wikipedia.org/wiki/Exclusive_disjunction

¢ 49. Wikipedia - Star network
https://en.wikipedia.org/wiki/Star_network

¢ 50. Qubes OS Project
https://www.qubes-os.org

¢ 51. Electronic Frontier Foundation - EFF v. NSA, ODNI - Vulnerabilities FOIA
https://www.eff.org/cases/eff-v-nsa-odni-vulnerabilities-foia

¢ 52. Wikipedia - Venona project - Decryption
http://en.wikipedia.org/wiki/VENONA_project#Decryption

¢ 53. Open Crypto Audit Project - Verified TrueCrypt v. 7.1 source and binary mirror
https://opencryptoaudit.org

¢ 54. Wikipedia - Secure channel
https://enwikipedia.org/wiki/Secure_channel

¢ 55. Wikipedia - Air gap (networking)
https://en.wikipedia.org/wiki/Air_gap_(networking)

¢ 56. Wikipedia - Dead drop
http://en.wikipedia.org/wiki/Dead_drop

¢ 57. Wikipedia - Customs
https://en.wikipedia.org/wiki/Customs

« 58. Wikipedia - Modulo operator
https://enwikipedia.org/wiki/Modulo_operation

http://www.biometricupdate.com/201509/uab-researchers-find-that-automated-voice-imitation-can-spoof-voice-authentication-systems
http://www.biometricupdate.com/201509/uab-researchers-find-that-automated-voice-imitation-can-spoof-voice-authentication-systems
http://www.biometricupdate.com/201509/uab-researchers-find-that-automated-voice-imitation-can-spoof-voice-authentication-systems
http://www.biometricupdate.com/201509/uab-researchers-find-that-automated-voice-imitation-can-spoof-voice-authentication-systems
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/
http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/
http://security.stackexchange.com/questions/42409/are-self-signed-certificates-actually-more-secure-than-ca-signed-certificates-no
http://security.stackexchange.com/questions/42409/are-self-signed-certificates-actually-more-secure-than-ca-signed-certificates-no
http://security.stackexchange.com/questions/42409/are-self-signed-certificates-actually-more-secure-than-ca-signed-certificates-no
http://security.stackexchange.com/questions/42409/are-self-signed-certificates-actually-more-secure-than-ca-signed-certificates-no
https://www.cossacklabs.com/avoid-ssl-for-your-next-app.html
https://www.cossacklabs.com/avoid-ssl-for-your-next-app.html
https://en.wikipedia.org/wiki/Exclusive_disjunction
https://en.wikipedia.org/wiki/Exclusive_disjunction
https://en.wikipedia.org/wiki/Star_network
https://en.wikipedia.org/wiki/Star_network
https://www.qubes-os.org/
https://www.qubes-os.org/
https://www.eff.org/cases/eff-v-nsa-odni-vulnerabilities-foia
https://www.eff.org/cases/eff-v-nsa-odni-vulnerabilities-foia
http://en.wikipedia.org/wiki/VENONA_project#Decryption
http://en.wikipedia.org/wiki/VENONA_project#Decryption
https://opencryptoaudit.org/
https://opencryptoaudit.org/
https://en.wikipedia.org/wiki/Secure_channel
https://en.wikipedia.org/wiki/Secure_channel
https://en.wikipedia.org/wiki/Air_gap_(networking)
https://en.wikipedia.org/wiki/Air_gap_(networking)
http://en.wikipedia.org/wiki/Dead_drop
http://en.wikipedia.org/wiki/Dead_drop
https://en.wikipedia.org/wiki/Customs
https://en.wikipedia.org/wiki/Customs
https://en.wikipedia.org/wiki/Modulo_operation
https://en.wikipedia.org/wiki/Modulo_operation

59. Wikipedia - Steganography
https://en.wikipedia.org/wiki/Steganography

60. Wikipedia - Diplomatic bag
https://en.wikipedia.org/wiki/Diplomatic_bag

61. Wikipedia - Vienna Convention on Diplomatic Relations - Summary of provisions - Article
27

https://en.wikipedia.org/wiki/
Vienna_Convention_on_Diplomatic_Relations#Summary_of_provisions

62. Wikipedia - One-time pad - Perfect secrecy
https://en.wikipedia.org/wiki/One-time_pad#Perfect_secrecy

63. Wikipedia - Tamper-evident technology
https://en.wikipedia.org/wiki/Tamper-evident_technology

64. Wikipedia - SIGSALY
https://en.wikipedia.org/wiki/SIGSALY

65. Wikipedia - Traffic analysis
https://enwikipedia.org/wiki/Traffic_analysis

66. Veracrypt - Technical Details - Keyfiles
http://www.veracrypt.fr/en/docs/keyfiles-technical-details/

67. StackExchange - Cryptography - Could RDRAND (Intel) compromise entropy?
http://crypto.stackexchange.com/questions/10283/could-rdrand-intel-compromise-entropy

68. ArsTechnica - Report: NSA paid RSA to make flawed crypto algorithm the default
http://arstechnica.com/security/2013/12/report-nsa-paid-rsa-to-make-flawed-crypto-
algorithm-the-default/

69. World Wide Web Consortium (W3C) - Web Cryptography API - 10.2.1. The
getRandomValues method
http://wwww3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues

70. Wikipedia - /dev/random
https://en.wikipedia.org/wiki//dev/random

71. Wikipedia - Shot noise
https://en.wikipedia.org/wiki/Shot_noise

72. Wikipedia - Least significant bit
https://en.wikipedia.org/wiki/Least_significant_bit

73. Wikipedia - Macro photography
https://enwikipedia.org/wiki/Macro_photography

74. Wikipedia - Raw image format
https://en.wikipedia.org/wiki/Raw_image_format

75. Wikipedia - Portable Network Graphics
https://en.wikipedia.org/wiki/Portable_Network_Graphics

76. Wikipedia - BMP file format

https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Diplomatic_bag
https://en.wikipedia.org/wiki/Diplomatic_bag
https://en.wikipedia.org/wiki/Vienna_Convention_on_Diplomatic_Relations#Summary_of_provisions
https://en.wikipedia.org/wiki/Vienna_Convention_on_Diplomatic_Relations#Summary_of_provisions
https://en.wikipedia.org/wiki/Vienna_Convention_on_Diplomatic_Relations#Summary_of_provisions
https://en.wikipedia.org/wiki/Vienna_Convention_on_Diplomatic_Relations#Summary_of_provisions
https://en.wikipedia.org/wiki/One-time_pad#Perfect_secrecy
https://en.wikipedia.org/wiki/One-time_pad#Perfect_secrecy
https://en.wikipedia.org/wiki/Tamper-evident_technology
https://en.wikipedia.org/wiki/Tamper-evident_technology
https://en.wikipedia.org/wiki/SIGSALY
https://en.wikipedia.org/wiki/SIGSALY
https://en.wikipedia.org/wiki/Traffic_analysis
https://en.wikipedia.org/wiki/Traffic_analysis
http://www.veracrypt.fr/en/docs/keyfiles-technical-details/
http://www.veracrypt.fr/en/docs/keyfiles-technical-details/
http://crypto.stackexchange.com/questions/10283/could-rdrand-intel-compromise-entropy
http://crypto.stackexchange.com/questions/10283/could-rdrand-intel-compromise-entropy
http://arstechnica.com/security/2013/12/report-nsa-paid-rsa-to-make-flawed-crypto-algorithm-the-default/
http://arstechnica.com/security/2013/12/report-nsa-paid-rsa-to-make-flawed-crypto-algorithm-the-default/
http://arstechnica.com/security/2013/12/report-nsa-paid-rsa-to-make-flawed-crypto-algorithm-the-default/
http://arstechnica.com/security/2013/12/report-nsa-paid-rsa-to-make-flawed-crypto-algorithm-the-default/
http://www.w3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues
http://www.w3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues
https://en.wikipedia.org/wiki//dev/random
https://en.wikipedia.org/wiki//dev/random
https://en.wikipedia.org/wiki/Shot_noise
https://en.wikipedia.org/wiki/Shot_noise
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Macro_photography
https://en.wikipedia.org/wiki/Macro_photography
https://en.wikipedia.org/wiki/Raw_image_format
https://en.wikipedia.org/wiki/Raw_image_format
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Portable_Network_Graphics

https://enwikipedia.org/wiki/BMP_file_format

77. Wikipedia - JPEG
https://en.wikipedia.org/wiki/JPEG

78. VeraCrypt / TrueCrypt - Portable Mode
https://veracrypt.codeplex.com/wikipage?title=Portable%20Mode

79. PortableApps.com - Mozilla Firefox, Portable Edition
http://portableapps.com/apps/internet/firefox_portable

80. YouTube - Kim Dotcom raid video revealed
https://www.youtube.com/watch?v=pMas0tWc0sg

81. Wikipedia - Tailored Access Operations
https://en.wikipedia.org/wiki/Tailored_Access_Operations

82. The Guardian - Ladar Levison: Secrets, lies and Snowden's email: why I was forced to shut
down Lavabit
http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-
snowden-email

83. Wikipedia - Representational state transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

84. Wikipedia - Application programming interface
https://en.wikipedia.org/wiki/Application_programming_interface

85. Wikipedia - JSON
https://en.wikipedia.org/wiki/JSON

86. Wikipedia - Apache HTTP Server
https://en.wikipedia.org/wiki/Apache_HTTP_Server

87. Wikipedia - PostgreSQL
https://en.wikipedia.org/wiki/PostgreSQL

88. Wikipedia - PHP
https://enwikipedia.org/wiki/PHP

89. Wikipedia - Memory safety
https://en.wikipedia.org/wiki/Memory_safety

90. Wikipedia - LAPP (software bundle)
https://en.wikipedia.org/wiki/LAMP_(software_bundle)#Variants

92. Jericho Comms - Server Installation Guide
https://joshua-m-david.github.io/jerichoencryption/installation-server.html

93. Wikipedia - Virtual private server
https://fen.wikipedia.org/wiki/Virtual_private_server

94. Wikipedia - National security letter
https://en.wikipedia.org/wiki/National_security_letter

95. Moxie Marlinspike - SSL. And The Future Of Authenticity

https://en.wikipedia.org/wiki/BMP_file_format
https://en.wikipedia.org/wiki/BMP_file_format
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/JPEG
https://veracrypt.codeplex.com/wikipage?title=Portable%20Mode
https://veracrypt.codeplex.com/wikipage?title=Portable%20Mode
http://portableapps.com/apps/internet/firefox_portable
http://portableapps.com/apps/internet/firefox_portable
https://www.youtube.com/watch?v=pMas0tWc0sg
https://www.youtube.com/watch?v=pMas0tWc0sg
https://en.wikipedia.org/wiki/Tailored_Access_Operations
https://en.wikipedia.org/wiki/Tailored_Access_Operations
http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Memory_safety
https://en.wikipedia.org/wiki/Memory_safety
https://en.wikipedia.org/wiki/LAMP_(software_bundle)#Variants
https://en.wikipedia.org/wiki/LAMP_(software_bundle)#Variants
https://joshua-m-david.github.io/jerichoencryption/installation-server.html
https://joshua-m-david.github.io/jerichoencryption/installation-server.html
https://en.wikipedia.org/wiki/Virtual_private_server
https://en.wikipedia.org/wiki/Virtual_private_server
https://en.wikipedia.org/wiki/National_security_letter
https://en.wikipedia.org/wiki/National_security_letter

http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/

96. Youtube - DEFCON 19 - Moxie Marlinspike - SSL And The Future Of Authenticity
https://www.youtube.com/watch?v=pDm;j_xe7EIQ

97. Wikipedia - Man-in-the-middle attack
http://en.wikipedia.org/wiki/Man-in-the-middle_attack

98. Wikipedia - Heartbleed
http://en.wikipedia.org/wiki/Heartbleed

99. ArsTechnica - Critical crypto bug leaves Linux, hundreds of apps open to eavesdropping
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-
open-to-eavesdropping/

100. ArsTechnica - Extremely critical crypto flaw in i0S may also affect fully patched Macs
http://arstechnica.com/security/2014/02/extremely-critical-crypto-flaw-in-ios-may-also-affect-
fully-patched-macs/

101. Wikipedia - Deniable authentication
https://en.wikipedia.org/wiki/Deniable_authentication

102. The Intercept - XKEYSCORE: NSA's Google for the World's Private Communications
https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/

103. Der Spiegel - Inside TAO: Documents Reveal Top NSA Hacking Unit
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-
global-networks-a-940969-3.html

104. Wikipedia - NATO phonetic alphabet
https://en.wikipedia.org/wiki/NATO_phonetic_alphabet

105. Wikipedia - Unix time
https://fen.wikipedia.org/wiki/Unix_time

106. Wikipedia - Cryptographic nonce
https://en.wikipedia.org/wiki/Cryptographic_nonce

107. Wikipedia - Assignment (computer science)
https://en.wikipedia.org/wiki/Assignment_(computer_science)

108. Wikipedia - Concatenation
https://en.wikipedia.org/wiki/Concatenation

109. Wikipedia - Skein (hash function)
https://enwikipedia.org/wiki/Skein_(hash_function)

110. NCC Group - iSEC Partners - Blog - Double HMAC Verification
https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx

111. StackOverflow - Does it matter which equals operator (== vs ===) I use in JavaScript
comparisons?
http://stackoverflow.com/a/359509

112. Wikipedia - Base64
https://en.wikipedia.org/wiki/Base64

http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/
http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/
https://www.youtube.com/watch?v=pDmj_xe7EIQ
https://www.youtube.com/watch?v=pDmj_xe7EIQ
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Heartbleed
http://en.wikipedia.org/wiki/Heartbleed
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://arstechnica.com/security/2014/02/extremely-critical-crypto-flaw-in-ios-may-also-affect-fully-patched-macs/
http://arstechnica.com/security/2014/02/extremely-critical-crypto-flaw-in-ios-may-also-affect-fully-patched-macs/
http://arstechnica.com/security/2014/02/extremely-critical-crypto-flaw-in-ios-may-also-affect-fully-patched-macs/
http://arstechnica.com/security/2014/02/extremely-critical-crypto-flaw-in-ios-may-also-affect-fully-patched-macs/
https://en.wikipedia.org/wiki/Deniable_authentication
https://en.wikipedia.org/wiki/Deniable_authentication
https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-3.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-3.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-3.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-3.html
https://en.wikipedia.org/wiki/NATO_phonetic_alphabet
https://en.wikipedia.org/wiki/NATO_phonetic_alphabet
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Assignment_(computer_science)
https://en.wikipedia.org/wiki/Assignment_(computer_science)
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Skein_(hash_function)
https://en.wikipedia.org/wiki/Skein_(hash_function)
https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx
https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx
http://stackoverflow.com/a/359509
http://stackoverflow.com/a/359509
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

113. Wikipedia - Information leakage
https://en.wikipedia.org/wiki/Information_Leakage

114. Wikipedia - Chaffing and Winnowing
https://en.wikipedia.org/wiki/Chaffing and_winnowing

115. W3C - Web Cryptography API
http://wwww3.org/TR/WebCryptoAPI/

116. Wikipedia Grover's algorithm
https://en.wikipedia.org/wiki/Grover%27s_algorithm

117. Jericho Comms - Server Installation Guide - Create and install a TLS certificate
https://joshua-m-david.github.io/jerichoencryption/installation-server-tls.html

118. Wikipedia - SHA-3
https://en.wikipedia.org/wiki/SHA-3

119. The Keccak sponge function family
http://keccak.noekeon.org/

120. Wikipedia - NIST hash function competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition

121. Wikipedia - While loop
https://en.wikipedia.org/wiki/While_loop

122. Wikipedia - Pseudorandom number generator
http://en.wikipedia.org/wiki/Pseudo-random_number_generator

123. Wikipedia - Cryptographically secure pseudorandom number generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

124. NIST - Federal Information Processing Standards (FIPS) Publication 140-2 - Section 4.9.1 -
Power-Up Tests - Page 57 - 58
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

125. Wikipedia - Bitmap
https://en.wikipedia.org/wiki/Bitmap

126. RANDOM.ORG - Statistical Analysis - Simple Visual Analysis
https://www.random.org/analysis/

127. Wikipedia - Canon PowerShot G - G7 to G12
https://en.wikipedia.org/wiki/Canon_PowerShot_G#G7_to_G12

128. Wikipedia - Raw image format
https://fen.wikipedia.org/wiki/Raw_image_format

129. MIUI - The second operating system hiding in every mobile phone
http://en.miui.com/thread-10712-1-1.html

130. Wikipedia - Air gap (networking)
https://en.wikipedia.org/wiki/Air_gap_(networking)

131. Peter Gutmann - Secure Deletion of Data from Magnetic and Solid-State Memory

https://en.wikipedia.org/wiki/Information_Leakage
https://en.wikipedia.org/wiki/Information_Leakage
https://en.wikipedia.org/wiki/Chaffing_and_winnowing
https://en.wikipedia.org/wiki/Chaffing_and_winnowing
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/WebCryptoAPI/
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://joshua-m-david.github.io/jerichoencryption/installation-server-tls.html
https://joshua-m-david.github.io/jerichoencryption/installation-server-tls.html
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/SHA-3
http://keccak.noekeon.org/
http://keccak.noekeon.org/
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Pseudo-random_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
https://en.wikipedia.org/wiki/Bitmap
https://en.wikipedia.org/wiki/Bitmap
https://www.random.org/analysis/
https://www.random.org/analysis/
https://en.wikipedia.org/wiki/Canon_PowerShot_G#G7_to_G12
https://en.wikipedia.org/wiki/Canon_PowerShot_G#G7_to_G12
https://en.wikipedia.org/wiki/Raw_image_format
https://en.wikipedia.org/wiki/Raw_image_format
http://en.miui.com/thread-10712-1-1.html
http://en.miui.com/thread-10712-1-1.html
https://en.wikipedia.org/wiki/Air_gap_(networking)
https://en.wikipedia.org/wiki/Air_gap_(networking)

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

¢ 132. How To Geek - The HTG Guide to Hiding Your Data in a TrueCrypt Hidden Volume
http://www.howtogeek.com/109210/the-htg-guide-to-hiding-your-data-in-a-truecrypt-hidden-
volume

¢ 133. VeraCrypt - Documentation - Hidden Volume
https://veracrypt.codeplex.com/wikipage?title=Hidden%Z20Volume

¢ 134. Wikipedia - Advanced Encryption Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

» 135. Wikipedia - Block cipher mode of operation - Counter (CTR)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29

¢ 136. Wikipedia - Salsa20
https://en.wikipedia.org/wiki/Salsa20

¢ 137. Wikipedia - Advanced Encryption Standard process
https://enwikipedia.org/wiki/Advanced_Encryption_Standard_process

¢ 138. Wikipedia - eSTREAM - In ESTREAM portfolio
https://enwikipedia.org/wiki/ESTREAM#In_ESTREAM_portfolio

¢ 139. Wikipedia - Cryptanalysis - Symmetric ciphers
https://en.wikipedia.org/wiki/Cryptanalysis#Symmetric_ciphers

¢ 140. Wikipedia - Known-plaintext attack
https://en.wikipedia.org/wiki/Known-plaintext_attack

e 141. Wikipedia - Chosen-plaintext attack
https://enwikipedia.org/wiki/Chosen-plaintext_attack

e 142. Wikipedia - Authenticated encryption - Encrypt-then-MAC (EtM)
https://en.wikipedia.org/wiki/Authenticated_encryption#Encrypt-then-MAC_.28EtM.29

e 143. Hugo Krawczyk - The Order of Encryption and Authentication for Protecting
Communications
https://www.iacr.org/archive/crypto2001/21390309.pdf

e 144. Wikipedia - SHA-3 - Instances
https://en.wikipedia.org/wiki/SHA-3#Instances

¢ 145. Wikipedia - Key Wrap
https://en.wikipedia.org/wiki/Key_Wrap

¢ 146. Wikipedia - PBKDF2
https://en.wikipedia.org/wiki/PBKDF2

¢ 147. StackExchange - Cryptography - How secure would HMAC-SHA3 be?
https://crypto.stackexchange.com/questions/15782/how-secure-would-hmac-sha3-
be/15825#15825

o 148. Wikipedia - SHA-2
https://en.wikipedia.org/wiki/SHA-2

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.howtogeek.com/109210/the-htg-guide-to-hiding-your-data-in-a-truecrypt-hidden-volume
http://www.howtogeek.com/109210/the-htg-guide-to-hiding-your-data-in-a-truecrypt-hidden-volume
http://www.howtogeek.com/109210/the-htg-guide-to-hiding-your-data-in-a-truecrypt-hidden-volume
http://www.howtogeek.com/109210/the-htg-guide-to-hiding-your-data-in-a-truecrypt-hidden-volume
https://veracrypt.codeplex.com/wikipage?title=Hidden%20Volume
https://veracrypt.codeplex.com/wikipage?title=Hidden%20Volume
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
https://en.wikipedia.org/wiki/ESTREAM#In_ESTREAM_portfolio
https://en.wikipedia.org/wiki/ESTREAM#In_ESTREAM_portfolio
https://en.wikipedia.org/wiki/Cryptanalysis#Symmetric_ciphers
https://en.wikipedia.org/wiki/Cryptanalysis#Symmetric_ciphers
https://en.wikipedia.org/wiki/Known-plaintext_attack
https://en.wikipedia.org/wiki/Known-plaintext_attack
https://en.wikipedia.org/wiki/Chosen-plaintext_attack
https://en.wikipedia.org/wiki/Chosen-plaintext_attack
https://en.wikipedia.org/wiki/Authenticated_encryption#Encrypt-then-MAC_.28EtM.29
https://en.wikipedia.org/wiki/Authenticated_encryption#Encrypt-then-MAC_.28EtM.29
https://www.iacr.org/archive/crypto2001/21390309.pdf
https://www.iacr.org/archive/crypto2001/21390309.pdf
https://en.wikipedia.org/wiki/SHA-3#Instances
https://en.wikipedia.org/wiki/SHA-3#Instances
https://en.wikipedia.org/wiki/Key_Wrap
https://en.wikipedia.org/wiki/Key_Wrap
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/PBKDF2
https://crypto.stackexchange.com/questions/15782/how-secure-would-hmac-sha3-be/15825#15825
https://crypto.stackexchange.com/questions/15782/how-secure-would-hmac-sha3-be/15825#15825
https://crypto.stackexchange.com/questions/15782/how-secure-would-hmac-sha3-be/15825#15825
https://crypto.stackexchange.com/questions/15782/how-secure-would-hmac-sha3-be/15825#15825
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2

149. Wikipedia - Data Encryption Standard - History of DES - NSA's involvement in the design
https://en.wikipedia.org/wiki/Data_Encryption_Standard#NSA.27s_involvement_in_the_design

150. Application-specific integrated circuit
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

151. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich - Argon2: the memory-hard
function for password hashing and other applications
https://password-hashing.net/argon2-specs.pdf

152. Password Hashing Competition
https://password-hashing.net/

153. Wikipedia - berypt
https://en.wikipedia.org/wiki/Bcrypt

154. Wikipedia - scrypt
https://en.wikipedia.org/wiki/Scrypt

155. The Skein Hash Function Family - Section 4.8 - Skein as a Password-Based Key Derivation
Function (PBKDF)
https://www.schneier.com/skein1.3.pdf

156. StackExchange - Cryptography - Security of KDF1 and KDF2 (hash based KDF's)
https://crypto.stackexchange.com/questions/15673/security-of-kdf1-and-kdf2-hash-based-kdfs

157. Wikipedia - Length extension attack
https://en.wikipedia.org/wiki/Length_extension_attack

158. NCC Group - Thomas Ptacek - Javascript Cryptography Considered Harmful
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-
cryptography-considered-harmful/

159. Meadhbh Hamrick - In Defense of JavaScript Cryptography
https://webcache.googleusercontent.com/search?
g=cache:SJ4wtE3DMSU]J:blog.meadhbh.org/2013/08/in-defense-of-javascript-
cryptography.html

160. Nadim Kobeissi - Thoughts on Matasano Security's Critique of Javascript Cryptography
https://archive.is/hLei0

161. Jericho Comms - Frequently Asked Questions - What about Matasano Security's claims
that JavaScript cryptography is insecure?
https://joshua-m-david.github.io/jerichoencryption/faq.html#matasano-article-discussion

162. Wikipedia - tar (computing) - Uses - Software distribution
https://en.wikipedia.org/wiki/Tar_(computing)#Software_distribution

163. W3C - Web Storage
http://wwww3.org/TR/webstorage/

164. W3C - The WebSocket API
http://www.w3.org/TR/websockets/

165. W3C - File API
http://www.w3.org/TR/FileAPI/

https://en.wikipedia.org/wiki/Data_Encryption_Standard#NSA.27s_involvement_in_the_design
https://en.wikipedia.org/wiki/Data_Encryption_Standard#NSA.27s_involvement_in_the_design
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/
https://password-hashing.net/
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Scrypt
https://www.schneier.com/skein1.3.pdf
https://www.schneier.com/skein1.3.pdf
https://crypto.stackexchange.com/questions/15673/security-of-kdf1-and-kdf2-hash-based-kdfs
https://crypto.stackexchange.com/questions/15673/security-of-kdf1-and-kdf2-hash-based-kdfs
https://en.wikipedia.org/wiki/Length_extension_attack
https://en.wikipedia.org/wiki/Length_extension_attack
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://webcache.googleusercontent.com/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-of-javascript-cryptography.html
https://webcache.googleusercontent.com/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-of-javascript-cryptography.html
https://webcache.googleusercontent.com/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-of-javascript-cryptography.html
https://webcache.googleusercontent.com/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-of-javascript-cryptography.html
https://webcache.googleusercontent.com/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-of-javascript-cryptography.html
https://webcache.googleusercontent.com/search?q=cache:SJ4wtE3DMSUJ:blog.meadhbh.org/2013/08/in-defense-of-javascript-cryptography.html
https://archive.is/hLei0
https://archive.is/hLei0
https://joshua-m-david.github.io/jerichoencryption/faq.html#matasano-article-discussion
https://joshua-m-david.github.io/jerichoencryption/faq.html#matasano-article-discussion
https://en.wikipedia.org/wiki/Tar_(computing)#Software_distribution
https://en.wikipedia.org/wiki/Tar_(computing)#Software_distribution
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/FileAPI/

166. Firebug - JavaScript Debugger and Profiler
https://getfirebug.com/javascript

167. Wikipedia - Firefox OS
https://en.wikipedia.org/wiki/Firefox_OS

168. Mozilla - The Mozilla Manifesto
https://www.mozilla.org/en-US/about/manifesto/

169. Mozilla - Download Firefox
https://www.mozilla.org/en-US/firefox/

170. The Chromium Projects - Chromium
https://www.chromium.org/Home

171. Wikipedia - PRISM (surveillance program)
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)

172. Ars Technica - Not OK, Google: Chromium voice extension pulled after spying concerns
http://arstechnica.com/security/2015/06/not-ok-google-chromium-voice-extension-pulled-
after-spying-concerns/

173. Mozilla - Firefox - Use the Profile Manager to create and remove Firefox profiles
https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles

174. Google Code - crypto-js library
https://code.google.com/p/crypto-js/

175. HTML5 Rocks - The Basics of Web Workers
http://www.html5rocks.com/en/tutorials/workers/basics/

176. Wikipedia - Blocking (computing)
https://en.wikipedia.org/wiki/Blocking_(computing)

177. Wikipedia - Cross-origin resource sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

178. Wikipedia - Node.js
https://enwikipedia.org/wiki/Node.js

179. Wikipedia - SQL injection
https://en.wikipedia.org/wiki/SQL_injection

180. Wikipedia - Metadata - Telecommunications
https://en.wikipedia.org/wiki/Metadata#Telecommunications

181. MDN Web Docs - Fetch API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

182. Wikipedia - ASCII - ASCII printable characters
https://enwikipedia.org/wiki/ASCII#ASCII_printable_characters

183. Wikipedia - ISO basic Latin alphabet - Alphabets containing the same set of letters
https://en.wikipedia.org/wiki/
ISO_basic_Latin_alphabet#Alphabets_containing_the_same_set_of_letters

https://getfirebug.com/javascript
https://getfirebug.com/javascript
https://en.wikipedia.org/wiki/Firefox_OS
https://en.wikipedia.org/wiki/Firefox_OS
https://www.mozilla.org/en-US/about/manifesto/
https://www.mozilla.org/en-US/about/manifesto/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.chromium.org/Home
https://www.chromium.org/Home
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
http://arstechnica.com/security/2015/06/not-ok-google-chromium-voice-extension-pulled-after-spying-concerns/
http://arstechnica.com/security/2015/06/not-ok-google-chromium-voice-extension-pulled-after-spying-concerns/
http://arstechnica.com/security/2015/06/not-ok-google-chromium-voice-extension-pulled-after-spying-concerns/
http://arstechnica.com/security/2015/06/not-ok-google-chromium-voice-extension-pulled-after-spying-concerns/
https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles
https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles
https://code.google.com/p/crypto-js/
https://code.google.com/p/crypto-js/
http://www.html5rocks.com/en/tutorials/workers/basics/
http://www.html5rocks.com/en/tutorials/workers/basics/
https://en.wikipedia.org/wiki/Blocking_(computing)
https://en.wikipedia.org/wiki/Blocking_(computing)
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Metadata#Telecommunications
https://en.wikipedia.org/wiki/Metadata#Telecommunications
file:///home/j/Documents/Jericho-current/otpchat/livesite/information.html
file:///home/j/Documents/Jericho-current/otpchat/livesite/information.html
https://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
https://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet#Alphabets_containing_the_same_set_of_letters
https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet#Alphabets_containing_the_same_set_of_letters
https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet#Alphabets_containing_the_same_set_of_letters
https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet#Alphabets_containing_the_same_set_of_letters

184. Wikipedia - Diacritic
https://en.wikipedia.org/wiki/Diacritic

185. Wikipedia - UTF-8
https://en.wikipedia.org/wiki/UTF-8

186. Wikipedia - Hexadecimal
https://enwikipedia.org/wiki/Hexadecimal

187. Journal of Computer and System Sciences - Volume 18, Issue 2, Pages 143-154 -
J.Lawrence Carter, Mark N. Wegman - Universal classes of hash functions
https://www.sciencedirect.com/science/article/pii/0022000079900448

188. Wikipedia - Nibble
https://en.wikipedia.org/wiki/Nibble

189. Wikipedia - Octet (computing)
https://en.wikipedia.org/wiki/Octet_(computing)

190. Wikipedia - Twitter - Tweets
https://en.wikipedia.org/wiki/Twitter#Tweets

191. Wikipedia - Short Message Service
https://en.wikipedia.org/wiki/Short_Message_Service

192. Wikipedia - Year 2038 problem
https://en.wikipedia.org/wiki/Year_2038_problem

193. Wikipedia - Russian copulation
https://en.wikipedia.org/wiki/Russian_copulation

194. Dirk Rijmenants' Cipher Machines and Cryptology - One-time Pad - Definition of One-
time pad
http://users.telenet.be/d.rijmenants/en/onetimepad.htm

195. Wikipedia - Bit-flipping attack
https://en.wikipedia.org/wiki/Bit-flipping_attack

196. StackExchange - Cryptography - What security do Cryptographic Sponges offer against
generic quantum attacks?
https://crypto.stackexchange.com/questions/419/what-security-do-cryptographic-sponges-
offer-against-generic-quantum-attacks/10544#10544

197. Wikipedia - Hash-based message authentication code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

198. Wikipedia - Merkle-Damgard construction
https://enwikipedia.org/wiki/Merkle-Damgard_construction

199. StackExchange - Cryptography - Can Skein be used as a secure MAC in format H(k | | m)?
https://crypto.stackexchange.com/questions/15813/can-skein-be-used-as-a-secure-mac-in-
format-hk-m/15815#15815

200. StackExchange - Cryptography - Is HMAC needed for a SHA-3 based MAC?
https://crypto.stackexchange.com/questions/17735/is-hmac-needed-for-a-sha-3-based-mac

https://en.wikipedia.org/wiki/Diacritic
https://en.wikipedia.org/wiki/Diacritic
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Hexadecimal
https://www.sciencedirect.com/science/article/pii/0022000079900448
https://www.sciencedirect.com/science/article/pii/0022000079900448
https://en.wikipedia.org/wiki/Nibble
https://en.wikipedia.org/wiki/Nibble
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Twitter#Tweets
https://en.wikipedia.org/wiki/Twitter#Tweets
https://en.wikipedia.org/wiki/Short_Message_Service
https://en.wikipedia.org/wiki/Short_Message_Service
https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Russian_copulation
https://en.wikipedia.org/wiki/Russian_copulation
http://users.telenet.be/d.rijmenants/en/onetimepad.htm
http://users.telenet.be/d.rijmenants/en/onetimepad.htm
https://en.wikipedia.org/wiki/Bit-flipping_attack
https://en.wikipedia.org/wiki/Bit-flipping_attack
https://crypto.stackexchange.com/questions/419/what-security-do-cryptographic-sponges-offer-against-generic-quantum-attacks/10544#10544
https://crypto.stackexchange.com/questions/419/what-security-do-cryptographic-sponges-offer-against-generic-quantum-attacks/10544#10544
https://crypto.stackexchange.com/questions/419/what-security-do-cryptographic-sponges-offer-against-generic-quantum-attacks/10544#10544
https://crypto.stackexchange.com/questions/419/what-security-do-cryptographic-sponges-offer-against-generic-quantum-attacks/10544#10544
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Merkle-Damgard_construction
https://en.wikipedia.org/wiki/Merkle-Damgard_construction
https://crypto.stackexchange.com/questions/15813/can-skein-be-used-as-a-secure-mac-in-format-hk-m/15815#15815
https://crypto.stackexchange.com/questions/15813/can-skein-be-used-as-a-secure-mac-in-format-hk-m/15815#15815
https://crypto.stackexchange.com/questions/15813/can-skein-be-used-as-a-secure-mac-in-format-hk-m/15815#15815
https://crypto.stackexchange.com/questions/15813/can-skein-be-used-as-a-secure-mac-in-format-hk-m/15815#15815
https://crypto.stackexchange.com/questions/17735/is-hmac-needed-for-a-sha-3-based-mac
https://crypto.stackexchange.com/questions/17735/is-hmac-needed-for-a-sha-3-based-mac

201. Mozilla Developer Network - Number.MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/
MAX_SAFE_INTEGER

202. Wikipedia - Off-the-Record Messaging
https://en.wikipedia.org/wiki/Off-the-Record_Messaging

203. Wikipedia - Three-letter acronym - Examples
https://en.wikipedia.org/wiki/Three-letter_acronym#Examples

204. Wikipedia - Duress code - Military usage
https://en.wikipedia.org/wiki/Duress_code#Military_usage

205. Wikipedia - Social engineering (security)
https://enwikipedia.org/wiki/Social_engineering_(computer_security)

206. Wikipedia - Live CD
https://en.wikipedia.org/wiki/Live_CD

207. Wikipedia - Denial-of-service attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

208. Wikipedia - Secure Shell
https://en.wikipedia.org/wiki/Secure_Shell

209. Wikipedia - SOCKS
https://en.wikipedia.org/wiki/SOCKS

210. StackExchange - Security - Is it possible for a phone to be transmitting even while turned
off and the battery removed?
http://security.stackexchange.com/questions/65382/is-it-possible-for-a-phone-to-be-
transmitting-even-while-turned-off-and-the-batt/65455#65455

211. Tor Project - Anonymity Online
https://www.torproject.org

212. Tails - Privacy for anyone anywhere
https://tails.boum.org/

213. Wikipedia - Rubber-hose cryptanalysis
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis

214. xked - Security
https://xkcd.com/538/

215. Jan Krhovjak, Petr Svenda, Vaclav Matyas - The Sources of Randomness in Mobile
Devices
https://www.fi.muni.cz/usr/matyas/RNG_nordsec07_cameraReady.pdf

216. Jan Bouda, Jan Krhovjak, Vashek Matyas, and Petr Svenda - Towards True Random
Number Generation in Mobile Environments
https://www.fi.muni.cz/~xsvenda/docs/RNGExtractor_NordSec09.pdf

217. Wikipedia - Bernoulli process - Basic Von Neumann extractor
https://fenwikipedia.org/wiki/Bernoulli_process#Basic_Von_Neumann_extractor

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://en.wikipedia.org/wiki/Off-the-Record_Messaging
https://en.wikipedia.org/wiki/Off-the-Record_Messaging
https://en.wikipedia.org/wiki/Three-letter_acronym#Examples
https://en.wikipedia.org/wiki/Three-letter_acronym#Examples
https://en.wikipedia.org/wiki/Duress_code#Military_usage
https://en.wikipedia.org/wiki/Duress_code#Military_usage
https://en.wikipedia.org/wiki/Social_engineering_(computer_security)
https://en.wikipedia.org/wiki/Social_engineering_(computer_security)
https://en.wikipedia.org/wiki/Live_CD
https://en.wikipedia.org/wiki/Live_CD
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/SOCKS
https://en.wikipedia.org/wiki/SOCKS
http://security.stackexchange.com/questions/65382/is-it-possible-for-a-phone-to-be-transmitting-even-while-turned-off-and-the-batt/65455#65455
http://security.stackexchange.com/questions/65382/is-it-possible-for-a-phone-to-be-transmitting-even-while-turned-off-and-the-batt/65455#65455
http://security.stackexchange.com/questions/65382/is-it-possible-for-a-phone-to-be-transmitting-even-while-turned-off-and-the-batt/65455#65455
http://security.stackexchange.com/questions/65382/is-it-possible-for-a-phone-to-be-transmitting-even-while-turned-off-and-the-batt/65455#65455
https://www.torproject.org/
https://www.torproject.org/
https://tails.boum.org/
https://tails.boum.org/
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis
https://xkcd.com/538/
https://xkcd.com/538/
https://www.fi.muni.cz/usr/matyas/RNG_nordsec07_cameraReady.pdf
https://www.fi.muni.cz/usr/matyas/RNG_nordsec07_cameraReady.pdf
https://www.fi.muni.cz/~xsvenda/docs/RNGExtractor_NordSec09.pdf
https://www.fi.muni.cz/~xsvenda/docs/RNGExtractor_NordSec09.pdf
https://en.wikipedia.org/wiki/Bernoulli_process#Basic_Von_Neumann_extractor
https://en.wikipedia.org/wiki/Bernoulli_process#Basic_Von_Neumann_extractor

218. Boston University - Research - Quantum Code Master - Using the strange laws of
quantum mechanics to encrypt the world's most secret messages
http://www.bu.edu/research/articles/secure-quantum-key-distribution-encryption

219. Crypto StackExchange - Randomness test question from FIPS 140-1 and comparison with
140-2
https://crypto.stackexchange.com/questions/15052/randomness-test-question-from-fips-140-1-
and-comparison-with-140-2

220. Wikipedia - Government Communications Headquarters
https://en.wikipedia.org/wiki/Government_Communications_Headquarters

221. Wikipedia - Tailored Access Operations
https://en.wikipedia.org/wiki/Tailored_Access_Operations

222. CAcert Research Lab - Random Number Generator Analysis
http://www.cacert.at/random/

223. University of Oulu - Psuedo Random Number Generators
https://ee.oulu.fi/research/ouspg/Frontier_Whitepaper-prng

224. GNOME - Shotwell
https://wiki.gnome.org/Apps/Shotwell

225. CAcert Research Lab - Random Number Generator Results - JC v1.5.2 - LSBs
http://www.cacert.at/cgi-bin/rngresults#14243

226. CAcert Research Lab - Random Number Generator Results - JC v1.5.2 - LSBs XORed
http://www.cacert.at/cgi-bin/rngresults#3628

227. CAcert Research Lab - Random Number Generator Results - JC v1.5.2 - LSBs XORed VNE
http://www.cacert.at/cgi-bin/rngresults#2458

228. Original test image 1 - Beach sand - 4032 x 3024 px - 292,626,432 bits (22.8 MB
compressed PNG)
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-
image.png

229. Original test image 1 - Beach sand - Least significant bits - Black and white bitmap - 3491
X 3491 px - 12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-
image-Isbs-bw-bitmap.png

230. Original test image 1 - Beach sand - Least significant bits - Colour bitmap - 712 x 712 px -
12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-
image-Isbs-colour-bitmap.png

231. Original test image 1 - Beach sand - Least significant bits - FIPS 140-2 Test tesults -
12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-
image-Isbs-test-results.txt

232. Original test image 2 - Beach sand - 4032 x 3024 px - 292,626,432 bits (22.8 MB
compressed PNG)

http://www.bu.edu/research/articles/secure-quantum-key-distribution-encryption
http://www.bu.edu/research/articles/secure-quantum-key-distribution-encryption
https://crypto.stackexchange.com/questions/15052/randomness-test-question-from-fips-140-1-and-comparison-with-140-2
https://crypto.stackexchange.com/questions/15052/randomness-test-question-from-fips-140-1-and-comparison-with-140-2
https://crypto.stackexchange.com/questions/15052/randomness-test-question-from-fips-140-1-and-comparison-with-140-2
https://crypto.stackexchange.com/questions/15052/randomness-test-question-from-fips-140-1-and-comparison-with-140-2
https://en.wikipedia.org/wiki/Government_Communications_Headquarters
https://en.wikipedia.org/wiki/Government_Communications_Headquarters
https://en.wikipedia.org/wiki/Tailored_Access_Operations
https://en.wikipedia.org/wiki/Tailored_Access_Operations
http://www.cacert.at/random/
http://www.cacert.at/random/
https://ee.oulu.fi/research/ouspg/Frontier_Whitepaper-prng
https://ee.oulu.fi/research/ouspg/Frontier_Whitepaper-prng
https://wiki.gnome.org/Apps/Shotwell
https://wiki.gnome.org/Apps/Shotwell
http://www.cacert.at/cgi-bin/rngresults#14243
http://www.cacert.at/cgi-bin/rngresults#14243
http://www.cacert.at/cgi-bin/rngresults#3628
http://www.cacert.at/cgi-bin/rngresults#3628
http://www.cacert.at/cgi-bin/rngresults#3628
http://www.cacert.at/cgi-bin/rngresults#3628
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-first-image-lsbs-test-results.txt

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-
image.png

¢ 233. Original test image 2 - Beach sand - Least significant bits - Black and white bitmap - 3491
X 3491 px - 12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-
image-Isbs-bw-bitmap.png

¢ 234. Original test image 2 - Beach sand - Least significant bits - Colour bitmap - 712 x 712 px -
12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-
image-Isbs-colour-bitmap.png

« 235. Original test image 2 - Beach sand - Least significant bits - FIPS 140-2 Test tesults -
12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-
image-Isbs-test-results.txt

» 236. Least significant bits of both images XORed together - Black and white bitmap - 3491 x
3491 px - 12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-
images-xored-bw-bitmap.png

¢ 237. Least significant bits of both images XORed together - Colour bitmap - 712 x 712 px -
12,192,768 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-
images-xored-colour-bitmap.png

» 238. Least significant bits of both images XORed together - FIPS 140-2 Test tesults - 12,192,768
bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-
images-xored-test-results

¢ 239. After Basic Von Neumann Extraction of the XORed least significant bits - Black and white
bitmap - 1746 x 1746 px - 3,049,484 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-
images-xored-vne-bw-bitmap.png

e 240. After Basic Von Neumann Extraction of the XORed least significant bits - Colour bitmap -
356 x 356 px - 3,049,484 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-
images-xored-vne-colour-bitmap.png

¢ 241. After Basic Von Neumann Extraction of the XORed least significant bits - FIPS 140-2 Test
tesults - 3,049,484 bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-
images-xored-vne-test-results.txt

o 242. NIST SP 800-22 - Test results - Least significant bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-
sp-800-22-final-analysis-report-Isbs.txt

e 243. NIST SP 800-22 - Test results - Least significant bits of both images XORed together
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-second-image-lsbs-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-test-results
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-test-results
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-test-results
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-test-results
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-bw-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-colour-bitmap.png
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-sand-both-images-xored-vne-test-results.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored.txt

sp-800-22-final-analysis-report-Ishs-xored.txt

244. NIST SP 800-22 - Test results - After Basic Von Neumann Extraction of the XORed least
significant bits
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-
sp-800-22-final-analysis-report-Ishs-xored-vne.txt

245. The GNU Privacy Guard
https://www.gnupg.org

246. Electron
http://electron.atom.io

247. PhoneGap
https://enwikipedia.org/wiki/Apache_Cordova

248. National Institute of Standards and Technology - Special Publication 800-22 - Revision 1a
- A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22revia.pdf

249. ENT - A Psuedorandom Number Sequence Test Program
http://www.fourmilab.ch/random/

250. Wikipedia - Diehard tests
https://en.wikipedia.org/wiki/Diehard_tests

251. New Zealand Herald - NZ Customs wants new powers to see passwords
http://nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11412237

252. Wikipedia - Randomness extractor
https://en.wikipedia.org/wiki/Randomness_extractor

253. HTML5 Rocks - Capturing Audio and Video in HTML5
http://www.html5rocks.com/en/tutorials/getusermedia/intro/

254. Wikipedia - AutoRun - Attack vectors
https://en.wikipedia.org/wiki/AutoRun#Attack_vectors

255. Wikipedia - BadUSB
https://enwikipedia.org/wiki/BadUSB

Copyright © 2013 - 2019 Joshua M. David

https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored-vne.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored-vne.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored-vne.txt
https://joshua-m-david.github.io/jerichoencryption/img/randomness-tests/v1.5.2-nist-sp-800-22-final-analysis-report-lsbs-xored-vne.txt
https://www.gnupg.org/
https://www.gnupg.org/
http://electron.atom.io/
http://electron.atom.io/
https://en.wikipedia.org/wiki/Apache_Cordova
https://en.wikipedia.org/wiki/Apache_Cordova
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/
https://en.wikipedia.org/wiki/Diehard_tests
https://en.wikipedia.org/wiki/Diehard_tests
http://nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11412237
http://nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11412237
https://en.wikipedia.org/wiki/Randomness_extractor
https://en.wikipedia.org/wiki/Randomness_extractor
http://www.html5rocks.com/en/tutorials/getusermedia/intro/
http://www.html5rocks.com/en/tutorials/getusermedia/intro/
https://en.wikipedia.org/wiki/AutoRun#Attack_vectors
https://en.wikipedia.org/wiki/AutoRun#Attack_vectors
https://en.wikipedia.org/wiki/BadUSB
https://en.wikipedia.org/wiki/BadUSB

